ВУЗ:
Составители:
Мартьянова А.Е. Компьютерная обработка информации
99
Расчет нормальной силы
Nx() E
h
R
⋅ e
kx⋅
C1 sin k x⋅()⋅ C2 cos k x⋅()⋅+()⋅ e
k− x⋅
C3 sin k x⋅()⋅ C4 cos k x⋅()⋅+()⋅+
γ
Lx−()R
2
⋅
Eh⋅
⋅+
...
⎡
⎢
⎢
⎢
⎣
⎤
⎥
⎥
⎥
⎦
⋅:=
Расчет угла поворота оболочки
φ x( ) k exp k x⋅()⋅ C1 sin k x⋅()⋅ C2 cos k x⋅()⋅+()⋅
exp k x⋅( ) C1 cos k x⋅()⋅ k⋅ C2 sin k x⋅()⋅ k⋅−()⋅+
...
k− exp k− x⋅()⋅ C3 sin k x⋅()⋅ C4 cos k x⋅()⋅+()⋅+
...
exp k− x⋅( ) C3 cos k x⋅()⋅ k⋅ C4 sin k x⋅()⋅ k⋅−()⋅
γ R
2
⋅
Eh⋅()
−+
...
⎡
⎢
⎢
⎢
⎢
⎣
⎤
⎥
⎥
⎥
⎥
⎦
:=
Расчет изгибающего момента
Mx() 2− D⋅ k
2
⋅ exp k x⋅()⋅ C1⋅ cos k x⋅()⋅ 2D⋅ k
2
⋅ exp k x⋅()⋅ C2⋅ sin k x⋅()⋅+
2D⋅ k
2
⋅ exp k− x⋅()⋅ C3⋅ cos k x⋅()⋅ 2D⋅ k
2
⋅ exp k− x⋅()⋅ C4⋅ sin k x⋅()⋅−+
...
⎛
⎜
⎝
⎞
⎠
:=
Расчет поперечной силы
Qx() 2D⋅ k
3
⋅ exp k x⋅()⋅ C1⋅ sin k x⋅()⋅ 2D⋅ k
3
⋅ exp k x⋅()⋅ C1⋅ cos k x⋅()⋅−
2− D⋅ k
3
⋅ exp k− x⋅()⋅ C3⋅ cos k x⋅()⋅+
...
2D⋅ k
3
⋅ exp k x⋅()⋅ C2⋅ sin k x⋅()⋅ 2D⋅ k
3
⋅ exp k− x⋅()⋅ C3⋅ sin k x⋅()⋅−+
...
2− D⋅ k
3
⋅ exp k− x⋅()⋅ C4⋅ cos k x⋅()⋅+
...
2D⋅ k
3
⋅ exp k− x⋅()⋅ C4⋅ sin k x⋅()⋅ 2D⋅ k
3
⋅ exp k x⋅()⋅ C2⋅ cos k x⋅()⋅++
...
⎛
⎜
⎜
⎜
⎜
⎜
⎝
⎞
⎟
⎟
⎟
⎠
:=
Численное решение краевой задачи для ОДУ IV порядка
4
x
ω
d
d
4
E
h
DR
2
⋅
⋅ω⋅+
q
D
Краевые (граничные) условия
ω 0() 0
Mx L() D−
2
x
ω L()
d
d
2
⋅ 0
x
ω 0()
d
d
φ
0
Qx L() D−
3
x
ω L()
d
d
3
⋅ 0
Мартьянова А.Е. Компьютерная обработка информации 99
Расчет нормальной силы
h ⎡ k⋅ x − k⋅ x
N ( x) := E⋅ ⋅ ⎢ e ⋅ ( C1⋅ sin ( k ⋅ x) + C2⋅ cos ( k ⋅ x) ) + e ⋅ ( C3⋅ sin ( k ⋅ x) + C4⋅ cos ( k ⋅ x) ) ... ⎥⎤
R 2
⎢ ( L − x) ⋅ R ⎥
⎢⎣ + γ ⋅ ⎥⎦
E⋅ h
Расчет угла поворота оболочки
φ ( x) := ⎡ k ⋅ exp ( k ⋅ x) ⋅ ( C1⋅ sin ( k ⋅ x) + C2⋅ cos ( k ⋅ x) ) ... ⎤
⎢ + exp ( k ⋅ x) ⋅ ( C1⋅ cos ( k ⋅ x) ⋅ k − C2⋅ sin ( k ⋅ x) ⋅ k) ... ⎥
⎢ + −k ⋅ exp ( −k ⋅ x) ⋅ ( C3⋅ sin ( k ⋅ x) + C4⋅ cos ( k ⋅ x) ) ... ⎥
⎢ γ⋅R
2 ⎥
⎢ + exp ( −k ⋅ x) ⋅ ( C3⋅ cos ( k ⋅ x) ⋅ k − C4⋅ sin ( k ⋅ x) ⋅ k) − ⎥
⎣ ( E⋅ h) ⎦
Расчет изгибающего момента
M( x) := ⎛ −2⋅ D⋅ k ⋅ exp ( k ⋅ x) ⋅ C1⋅ cos ( k ⋅ x) + 2⋅ D⋅ k ⋅ exp ( k ⋅ x) ⋅ C2⋅ sin ( k ⋅ x) ... ⎞
2 2
⎜ 2 2
⎝ + 2⋅ D⋅ k ⋅ exp ( −k ⋅ x) ⋅ C3⋅ cos ( k ⋅ x) − 2⋅ D⋅ k ⋅ exp ( −k ⋅ x) ⋅ C4⋅ sin ( k ⋅ x) ⎠
Расчет поперечной силы
Q ( x) := ⎛ 2⋅ D⋅ k ⋅ exp ( k ⋅ x) ⋅ C1⋅ sin ( k ⋅ x) − 2⋅ D⋅ k ⋅ exp ( k ⋅ x) ⋅ C1⋅ cos ( k ⋅ x) ... ⎞
3 3
⎜ 3
⎜ + −2⋅ D⋅ k ⋅ exp ( −k ⋅ x) ⋅ C3⋅ cos ( k ⋅ x) ... ⎟
⎜ + 2⋅ D⋅ k 3 ⋅ exp ( k ⋅ x) ⋅ C2⋅ sin ( k ⋅ x) − 2⋅ D⋅ k 3 ⋅ exp ( −k ⋅ x) ⋅ C3⋅ sin ( k ⋅ x) ...⎟
⎜ + −2⋅ D⋅ k 3 ⋅ exp ( −k ⋅ x) ⋅ C4⋅ cos ( k ⋅ x) ... ⎟
⎜ 3 3
⎝ + 2⋅ D⋅ k ⋅ exp ( −k ⋅ x) ⋅ C4⋅ sin ( k ⋅ x) + 2⋅ D⋅ k ⋅ exp ( k ⋅ x) ⋅ C2⋅ cos ( k ⋅ x) ⎠
Численное решение краевой задачи для ОДУ IV порядка
d4 h q
ω + E⋅ ⋅ω
4 2 D
dx D⋅ R
Краевые (граничные) условия
ω ( 0) 0 d2
Mx( L) −D⋅ ω ( L) 0
2
dx
d d3
ω ( 0) φ 0 Qx ( L) −D⋅ ω ( L) 0
dx 3
dx
Страницы
- « первая
- ‹ предыдущая
- …
- 97
- 98
- 99
- 100
- 101
- …
- следующая ›
- последняя »
