ВУЗ:
Составители:
Рубрика:
H
j
, j ∈ J
P
(H
j
)
”απριoρι”
P
(H
j
|A)
”απoςτoριoρι”
A B
P
(A ∩ B) =
P
(A)
P
(B)
A
1
, . . . , A
n
P
(A
j
1
∩ . . . ∩ A
j
k
) =
P
(A
j
1
) · . . . ·
P
(A
j
k
)
k 1 < k 6 n j
1
, . . . , j
k
1 6 j
1
< . . . < j
k
6 n
A
1
, A
2
, . . . n > 1
A
1
, . . . , A
n
A B
P
(A|B) =
P
(A)
P
(B|A) =
P
(B)
A
1
, . . . , A
n
B
j
= A
j
B
j
= A
c
j
j = 1, . . . , n B
1
, . . . , B
n
A
1
, . . . , A
n
1 6 i 6= j 6 n A
i
A
j
A
1
, . . . , A
n
A
B
C
A ∩B = A ∩ C = B ∩C = A ∩B ∩C
P
(A ∩ B) =
P
(A ∩ C) =
P
(B ∩ C) =
P
(A ∩ B ∩ C) =
1
4
.
P
(A) =
P
(B) =
P
(C) =
1
2
.
P
(A ∩ B) =
P
(A)
P
(B)
P
(A ∩ C) =
P
(A)
P
(C)
P
(B ∩ C) =
P
(B)
P
(C)
A B C
P
(A ∩B ∩C) 6=
P
(A)
P
(B)
P
(C)
Çàìå÷àíèå 7. Ñîáûòèÿ Hj , j ∈ J ÷àñòî íàçûâàþò ãèïîòåçàìè. Âåðîÿòíîñòè P(Hj ) , êîòîðûå ïðèïèñûâàþò ãèïîòåçàì äî ïðîâåäåíèÿ ýêñïåðèìåíòà, íàçûâàþò àïðèîðíûìè âå- ðîÿòíîñòÿìè (îò ãðå÷. ”απριoρι” ), à âåðîÿòíîñòè P(Hj |A) , êîòîðûå âû÷èñëÿþòñÿ ïî ôîð- ìóëàì Áàéåñà ïîñëå ïðîâåäåíèÿ ýêñïåðèìåíòà, íàçûâàþò àïîñòîðèîðíûìè âåðîÿòíîñòÿìè (îò ãðå÷. ”απoςτ oριoρι” ). Îïðåäåëåíèå 2.1.14. Ñîáûòèÿ A è B íàçûâàþòñÿ íåçàâèñèìûìè, åñëè P(A ∩ B) = P(A) P(B) . Îïðåäåëåíèå 2.1.15. Ñîáûòèÿ A1 , . . . , An íàçûâàþòñÿ íåçàâèñèìûìè â ñîâîêóïíîñòè, åñëè P(Aj1 ∩ . . . ∩ Ajk ) = P(Aj1 ) · . . . · P(Ajk ) äëÿ ëþáîãî k , 1 < k 6 n , è äëÿ ëþáûõ j1 , . . . , jk òàêèõ, ÷òî 1 6 j1 < . . . < jk 6 n . Ñîáûòèÿ A1 , A2 , . . . íàçûâàþòñÿ íåçàâèñèìûìè â ñîâîêóïíîñòè, åñëè äëÿ ëþáîãî n > 1 ñîáûòèÿ A1 , . . . , An íåçàâèñèìû â ñîâîêóïíîñòè. Ïðåäëîæåíèå 2.1.5. Ñîáûòèÿ A è B , èìåþùèå íåíóëåâûå âåðîÿòíîñòè, íåçàâèñèìû òîãäà è òîëüêî òîãäà, êîãäà P(A|B) = P(A) (èëè P(B|A) = P(B) ). Ïðåäëîæåíèå 2.1.6. Ïóñòü A1 , . . . , An íåçàâèñèìûå â ñîâîêóïíîñòè ñîáûòèÿ, Bj = Aj ëèáî Bj = Acj , j = 1, . . . , n . Òîãäà B1 , . . . , Bn íåçàâèñèìûå â ñîâîêóïíîñòè ñîáûòèÿ. Îïðåäåëåíèå 2.1.16. Ñîáûòèÿ A1 , . . . , An íàçûâàþòñÿ ïîïàðíî íåçàâèñèìûìè, åñëè äëÿ ëþáûõ 1 6 i 6= j 6 n ñîáûòèÿ Ai è Aj íåçàâèñèìû. Ïðåäëîæåíèå 2.1.7. Åñëè ñîáûòèÿ A1 , . . . , An íåçàâèñèìû â ñîâîêóïíîñòè, òîãäà îíè ïîïàðíî íåçàâèñèìû, îáðàòíîå óòâåðæäåíèå íå âåðíî. Ïðèìåð 1 (Áåðíøòåéíà). Ïóñòü â óðíå íàõîäÿòñÿ 4 øàðà: áåëûé, êðàñíûé, ñèíèé è øàð, îêðàøåííûé îäíîâðåìåííî âî âñå òðè öâåòà. Èç óðíû íàóäà÷ó âûíèìàþò øàð. Ðàññìîòðèì ñîáûòèÿ: A âûáðàí øàð, îêðàñêà êîòîðîãî ñîäåðæèò áåëûé öâåò; B âûáðàí øàð, îêðàñêà êîòîðîãî ñîäåðæèò êðàñíûé öâåò; C âûáðàí øàð, îêðàñêà êîòîðîãî ñîäåðæèò ñèíèé öâåò. Òîãäà A ∩ B = A ∩ C = B ∩ C = A ∩ B ∩ C ñîáûòèå, ñîñòîÿùåå â òîì, ÷òî âûáðàí øàð, îêðàñêà êîòîðîãî ñîäåðæèò âñå òðè öâåòà. Íàéäåì 1 P(A ∩ B) = P(A ∩ C) = P(B ∩ C) = P(A ∩ B ∩ C) = . 4 Ñ äðóãîé ñòîðîíû, 1 P(A) = P(B) = P(C) = . 2 ßñíî ÷òî, P(A ∩ B) = P(A) P(B) , P(A ∩ C) = P(A) P(C) , P(B ∩ C) = P(B) P(C) , òî åñòü ñîáûòèÿ A , B , C ïîïàðíî íå çàâèñèìû. Îäíàêî, P(A ∩ B ∩ C) 6= P(A) P(B) P(C) , ñëåäîâàòåëüíî, ñîáûòèÿ íå ÿâëÿþòñÿ íåçàâèñèìûìè â ñîâîêóïíîñòè. 11
Страницы
- « первая
- ‹ предыдущая
- …
- 9
- 10
- 11
- 12
- 13
- …
- следующая ›
- последняя »