Конформные отображения. Мицик М.Ф. - 2 стр.

UptoLike

Составители: 

Рубрика: 

.
.
1
.  
( )
zfw =
  
CD
. 
( )
zf

Dz
0
, 
, 
D
.
2
. 
( )
zfw =

CD
. 
( )
zf
   
D
,   
.

.
 
( )
zfw
=
 
Dz
0
. 
, 
( )
0
0
0
0
lim
zz
zfzf
zf
Dz
zz
=
.
 
0
zz
() ( )
0
zfzf
  

Dzz
0
,

() ( )
Ezfzf
0
,
.

() ( )
0
0
zz
zfzf
    
0
zz
 

( )
zfw =
.  ,
( )
0
zf


0
zz

( )
zfw =

Dz
0
, 
0
zz
.

.

( )
tz
λ
=

t
, 

[ ]
Rβα,
, , 

( )
tz
λ
=

D
. 

[ ]
β
α
,
0
t

( )
tz
λ
=

( )
0
0
t
λ
. 
[ ]
βα,
0
t

( )
{
}
tzDzL λ==
,   1.
( )
( )
() ( )
=
0
0
0
ArglimArg
0
tt
tt
t
Lt
tt
λλ
λ
.
D
0
z
( )
tz
λ
=
                                                                                         .

                                                                                                                 .
         1.                              w = f (z )                                             D⊂C.
f (z )                                                           z0 ∈ D ,
                                                                  ,                                              D.
         2   .                           w = f (z )                                              D⊂C.
f (z )                                                                           D,
                                                                     .


                                                                                  .
                                        w = f (z )                                                      z0 ∈ D .
                                                                                      f (z ) − f (z0 )
                                                     ,            f ′( z 0 ) = lim                           .
                                                                             z → z0
                                                                             z∈ D
                                                                                             z − z0
                          z − z0           f ( z ) − f ( z0 )
                                          z, z 0 ∈ D                             f ( z ), f ( z 0 ) ∈ E .
                           f ( z ) − f ( z0 )
                                z − z0
                                                                                        z − z0
                                   w = f (z ) .                              , f ′( z0 )
                                           z − z0                                                w = f (z)
z0 ∈ D                      ,           z → z0 .



                                                                                  .
                                                                    z = λ (t )
                                              t,                                                            D
         [α , β ] ⊂ R ,             ,                                                                            z0
                 z = λ (t )               D.
                       t 0 ∈ [α , β ]                           z = λ (t )                      z = λ (t )

                          λ ′(t 0 ) ≠ 0 .                              t 0 ∈ [α , β ]
         L = {z ∈ D z = λ (t )}                                          ,                                            1.
                                                       λ (t ) − λ (t 0 ) 
                          Arg ( λ ′(t 0 ) ) = lim Arg                   .
                                                                          
                                              t →t 0
                                              t∈ L         t  − t 0      