Конформные отображения. Мицик М.Ф. - 3 стр.

UptoLike

Составители: 

Рубрика: 

 
( )
zfw =
 
( )
00
tz λ=


( )
tz
λ
=

() ()( )
{ }
EtftwL ===
λµ
, 
0
0
zf
.       
( ) ( ) ( )
0
000
=
tzft
λ
µ

( )
( )
( )
( )
( )
( )
000
ArgArgArg tzft λµ
+
=
.
 ,   ,  

( )
Dtz =
00
λ
  
( )
zfw =
, 
( )
0
0
zf
   ,  

( )
Ezfw
=
00
,     
( )
( )
0
Arg zf
.
.
3
. 
( )
zfw
=
, 
 
CD
 
CE
  
, :
1)    
D
    (
),
2) 
D
 () .
, 
, 
.
     
 ,        
.
.
 1. 
( )
zfw =

CD
,    
( )
0
zf
.  
( )
zfw
=

D

CE
.
.

( )
zfw =
 
D
L
  
E
L
  
( ) ( )( )
tftw λµ==
, 
 
( )
00
zfw
=
(.1).  
L
 
0
w

( ) ( ) ( )
000
tzft λµ
=
. 
( ) ( ) ( ) ( )
0000
tArgtArgzfArgtArg λαλµ
+=
+
=
,
 : 
α

( )
0
zf
 ,  
      
0
z
 
( )
zfw =
.   ,   
1
L

2
L
, 
                                        w = f (z )                                                  z 0 = λ (t 0 )
                                  z = λ (t )                     L′ = {w = µ (t ) = f (λ (t ))} ⊂ E ,
f ′(z 0 ) ≠ 0 .
µ ′(t0 ) = f ′( z0 )λ ′(t0 ) ≠ 0           Arg ( µ ′(t 0 ) ) = Arg ( f ′(z 0 ) ) + Arg ( λ ′(t 0 ) ) .
                                    ,                                                      ,
            z 0 = λ (t0 ) ∈ D                                                                    w = f (z ) ,
f ′( z 0 ) ≠ 0                                                                             ,
           w0 = f (z 0 ) ∈ E ,
Arg ( f ′( z0 ) ) .

                                                                                                               .
           3.                                                                                   w = f (z ) ,
                                  D⊂C                           E ⊂C
     ,                                                            :
   1)                                                       D                                                          (
                                                   ),
   2)                                      D                      (               )                                .
                                                                                      ,
                                               ,
      .

                      ,
                          .
                                                                                                       .
                          1.                            w = f (z )
D⊂C,                                                             f ′( z ) ≠ 0 .                                w = f (z )
                                                        D                                      E ⊂C.
                                                                           .
                              w = f (z )                   L⊂D
L′ ⊂ E                                                w = µ (t ) = f (λ (t )) ,
                  w0 = f (z0 ) ( .1).                                        L′                                        w0
                                      µ ′(t0 ) = f ′(z0 )λ ′(t0 ) .
                 Argµ ′(t0 ) = Arg f ′(z 0 ) + Argλ ′(t0 ) = α + Argλ ′(t0 ) ,
                    :            α                       f ′(z0 )               ,
                                                                                           z0
w = f (z ) .                                                ,                             L1    L2 ,