ВУЗ:
Составители:
Рубрика:
( )
zfw =
( )
00
tz λ=
( )
tz
λ
=
() ()( )
{ }
EtftwL ⊂===
′
λµ
,
( )
0
0
≠
′
zf
.
( ) ( ) ( )
0
000
≠
′
′
=
′
tzft
λ
µ
( )
( )
( )
( )
( )
( )
000
ArgArgArg tzft λµ
′
+
′
=
′
.
, ,
( )
Dtz ∈=
00
λ
( )
zfw =
,
( )
0
0
≠
′
zf
,
( )
Ezfw
∈
=
00
,
( )
( )
0
Arg zf
′
.
.
3
.
( )
zfw
=
,
CD
⊂
CE
⊂
, :
1)
D
(
),
2)
D
() .
,
,
.
,
.
.
1.
( )
zfw =
CD
⊂
,
( )
0≠
′
zf
.
( )
zfw
=
D
CE
⊂
.
.
( )
zfw =
D
L
⊂
E
L
⊂
′
( ) ( )( )
tftw λµ==
,
( )
00
zfw
=
(.1).
L
′
0
w
( ) ( ) ( )
000
tzft λµ
′
′
=
′
.
( ) ( ) ( ) ( )
0000
tArgtArgzfArgtArg λαλµ
′
+=
′
+
′
=
′
,
:
α
( )
0
zf
′
,
0
z
( )
zfw =
. ,
1
L
2
L
,
w = f (z ) z 0 = λ (t 0 )
z = λ (t ) L′ = {w = µ (t ) = f (λ (t ))} ⊂ E ,
f ′(z 0 ) ≠ 0 .
µ ′(t0 ) = f ′( z0 )λ ′(t0 ) ≠ 0 Arg ( µ ′(t 0 ) ) = Arg ( f ′(z 0 ) ) + Arg ( λ ′(t 0 ) ) .
, ,
z 0 = λ (t0 ) ∈ D w = f (z ) ,
f ′( z 0 ) ≠ 0 ,
w0 = f (z 0 ) ∈ E ,
Arg ( f ′( z0 ) ) .
.
3. w = f (z ) ,
D⊂C E ⊂C
, :
1) D (
),
2) D ( ) .
,
,
.
,
.
.
1. w = f (z )
D⊂C, f ′( z ) ≠ 0 . w = f (z )
D E ⊂C.
.
w = f (z ) L⊂D
L′ ⊂ E w = µ (t ) = f (λ (t )) ,
w0 = f (z0 ) ( .1). L′ w0
µ ′(t0 ) = f ′(z0 )λ ′(t0 ) .
Argµ ′(t0 ) = Arg f ′(z 0 ) + Argλ ′(t0 ) = α + Argλ ′(t0 ) ,
: α f ′(z0 ) ,
z0
w = f (z ) . , L1 L2 ,
