Задачи по векторному анализу. Михайлов В.К - 133 стр.

UptoLike

Рубрика: 

133
3.30. Ïðè xd âåêòîðíûé ïîòåíöèàë íå ñóùåñòâóåò, òàê
êàê â ýòîé îáëàñòè
div
ρ
E 0
. Ïðè x>d
ρ
Akd y= {,, }00
.
Ïðè x < -d
ρ
Akd y=− {,, }00
.
3.31.
ρ
ρρ
Azyxzyx ar=−=×
1
2
1
2
{,, }()
.
3.32.
ρ
ρρ
A z xy x yz y xz a r=− =×
1
3
1
3
22 2
{, , }()
.
3.33.
ρ
Ayzxzxy=−{,,}87
.
3.34.
ρ
A
xz
x
xz
=−
sin( )
,,
sin( )
0
2
.
3.35. — .
3.36.
ρ
ρρ ρ ρρρ ρ
Aprrrprpr×=
1
3
1
3
2
() (() )
.
3.37.
fr=
3
3
. Ïîäñêàçêà. Ñì. çàäà÷ó 2.124.
3.38.
fr=
2
2
.
3.39.
fr=
.
3.40.
fr=−1
.
3.41.
frurdr=
()
. Ïîäñêàçêà. Ñì. çàäà÷ó 2.124 èëè ïðèìåð 2
ðàçä. 2.6.
3.42. f=u(r). 3.46. Äà.
3.43. Äà. 3.47. — .
3.44. Íåò. 3.48. a) 1/r ; á) 2/r.
3.45. Íåò. 3.49. 6.
3.50. r
n
=n(n + 1)r
n—2
.
3.51. u(r) = C/r
3
, ãäå Ñ — ëþáîå ÷èñëî. Ïîäñêàçêà. Ñì. çàäà-
÷ó 2.57.
3.52. uu u=
′′
+
ρ
; uC C=+
12
ln
ρ
.
3.53. uu ur=
′′
+
2 ; uCrC=+
12
.
3.54. — .
3.30. Ïðè x ≤ d âåêòîðíûé ïîòåíöèàë íå ñóùåñòâóåò, òàê
                             ρ                 ρ
      êàê â ýòîé îáëàñòè div E ≠ 0 . Ïðè x > d A = kd{0,0, y} .
                       ρ
        Ïðè x < -d A = − kd{0,0, y} .
         ρ   1                        1 ρ ρ
3.31. A =      {z − y, x − z, y − x} = (a × r ) .
             2                        2
         ρ   1 2                             1 ρ ρ
3.32. A =      {z − xy, x 2 − yz, y 2 − xz} = (a × r ) .
             3                               3
         ρ
3.33. A = {−8 yz, xz,7 xy} .
      ρ  sin( xz )        sin( xz ) 
3.34. A =          , 0, −
                              2 
                                       .
            x
3.35. — .
         ρ   1 ρ ρ ρ 1 ρρ ρ ρ2
3.36. A =      ( p × r ) × r = (r ( p ⋅ r ) − pr ) .
             3                3
3.37. f = r 3 3 . Ïîäñêàçêà. Ñì. çàäà÷ó 2.124.
3.38. f = r 2 2 .
3.39. f = r .
3.40. f = −1 r .

3.41. f = ∫ ru(r )dr . Ïîäñêàçêà. Ñì. çàäà÷ó 2.124 èëè ïðèìåð 2
        ðàçä. 2.6.
3.42.   f = u(r).              3.46. Äà.
3.43.   Äà.                    3.47. — .
3.44.   Íåò.                   3.48. a) 1/r ; á) 2/r.
3.45.   Íåò.                   3.49. 6.
                               3.50. ∆r n = n (n + 1)rn—2.
3.51. u(r) = C/r3, ãäå Ñ — ëþáîå ÷èñëî. Ïîäñêàçêà. Ñì. çàäà-
      ÷ó 2.57.
3.52.   ∆u = u′′ + u′ ρ ; u = C1 ln ρ + C2 .
3.53.   ∆u = u′′ + 2 u′ r ; u = C1 r + C2 .
3.54. — .


                               133