Задачи по векторному анализу. Михайлов В.К - 135 стр.

UptoLike

Рубрика: 

135
4.16.
rot ( )
ρρ
aze=+
ρ
ϕ
22
.
4.17.
div
ρ
a = 0
;
rot
cos
,,cos
ρ
a
z
=
ϕ
ρ
ϕ
0
.
4.18.
div
ρ
e
ρ
ρ
= 1
,
div
ρ
e
ϕ
= 0
,
div
ρ
e
z
= 0
;
rot
ρ
e
ρ
= 0
,
rot
ρρ
ee
z
ϕ
ρ
=
,
rot
ρ
e
z
= 0
.
4.19.
div
ρ
e
r
r
=
2
,
div
tg
ρ
e
r
θ
θ
=
1
,
div
ρ
e
ϕ
= 0
;
rot
ρ
e
r
= 0
,
rot
ρ
e
e
r
θ
ϕ
=
,
rot
tg
ρ
ρ
ρ
e
e
r
e
r
r
ϕ
θ
θ
=−
.
4.20. 0.
4.21.
fCr=
2
.
4.22.
fC=
ρ
.
4.23.
aa z
ϕϕ
ρ
=
(,)
— ëþáàÿ ôóíêöèÿ, íå çàâèñÿùàÿ îò
ϕ
.
4.24.
fzf=− +
2
1
()
ρ
, ãäå f
1
(
ρ
) — ïðîèçâîëüíàÿ ñêàëÿðíàÿ
ôóíêöèÿ.
4.25.
fzf=− +
3
2
2
1
ρρ
()
, ãäå f
1
(
ρ
) — ïðîèçâîëüíàÿ ñêàëÿð-
íàÿ ôóíêöèÿ.
4.26. 2
π
R
2
h.
4.27.
π
R
2
h/4.
4.28. 2
π
R
3
.
4.29. Ïîäñêàçêà. Âîñïîëüçîâàòüñÿ òåîðåìîé Îñòðîãðàäñêî-
ãî è ñëåäñòâèåì 2 ðàçä. 2.4.
4.30. 2
π
R
4
.
4.31. 2
π
/R.
4.32. 0.
4.33. 8
π
R
3
/3.
4.34.
π
R
4
/2 — R
5
/3.
4.35. 2
π
h/3. Ïîäñêàçêà. Òàê êàê ïîëå
ρ
a
ñîëåíîèäàëüíî
(
div
ρ
a = 0
), òî â ñèëó ñëåäñòâèÿ 3 òåîðåìû Îñòðî-
ãðàäñêîãî (ðàçä. 2.4), ïëîñêóþ ïëîùàäêó S, îãðàíè-
÷åííóþ ïðÿìîóãîëüíûì êîíòóðîì, ìîæíî çàìåíèòü
íà ó÷àñòîê öèëèíäðè÷åñêîé ïîâåðõíîñòè ðàäèóñà R,
          ρ                ρ
4.16. rot a = ( ρ 2 + z 2 )eϕ .
           ρ          ρ      z cos ϕ
4.17. div a = 0 ; rot a =                    
                                     ,0, cos ϕ  .
                            ρ                 
           ρ              ρ               ρ
4.18. div eρ = 1 ρ , div eϕ = 0 , div ez = 0 ;
          ρ            ρ ρ                ρ
      rot eρ = 0 , rot eϕ = ez ρ , rot ez = 0 .
           ρ 2           ρ   1         ρ
4.19. div er = , div eθ = r tg θ , div eϕ = 0 ;
                r
                           ρ               ρ     ρ
          ρ            ρ eϕ rot eρ         er    eθ
      rot er = 0 , rot eθ = ,       ϕ =        −
                           r             r tg θ r .
4.20. 0.
4.21. f = C r 2 .
4.22. f = C ρ .
4.23. aϕ = aϕ ( ρ, z ) — ëþáàÿ ôóíêöèÿ, íå çàâèñÿùàÿ îò ϕ.
4.24. f = − z 2 + f1( ρ ) , ãäå f1(ρ) — ïðîèçâîëüíàÿ ñêàëÿðíàÿ
      ôóíêöèÿ.
              3
4.25. f = − ρz 2 + f1( ρ ) , ãäå f1(ρ) — ïðîèçâîëüíàÿ ñêàëÿð-
              2
      íàÿ ôóíêöèÿ.
4.26. 2πR2h.
4.27. πR2h/4.
4.28. 2πR3.
4.29. Ïîäñêàçêà. Âîñïîëüçîâàòüñÿ òåîðåìîé Îñòðîãðàäñêî-
      ãî è ñëåäñòâèåì 2 ðàçä. 2.4.
4.30. 2πR4.
4.31. 2π/R.
4.32. 0.
4.33. 8πR3/3.
4.34. πR4/2 — R5/3.
                                             ρ
4.35. 2πh/3. Ïîäñêàçêà. Òàê êàê ïîëå a ñîëåíîèäàëüíî
            ρ
      ( div a = 0 ), òî â ñèëó ñëåäñòâèÿ 3 òåîðåìû Îñòðî-
      ãðàäñêîãî (ðàçä. 2.4), ïëîñêóþ ïëîùàäêó S, îãðàíè-
      ÷åííóþ ïðÿìîóãîëüíûì êîíòóðîì, ìîæíî çàìåíèòü
      íà ó÷àñòîê öèëèíäðè÷åñêîé ïîâåðõíîñòè ðàäèóñà R,


                                  135