Задачи по векторному анализу. Михайлов В.К - 15 стр.

UptoLike

Рубрика: 

15
1.30.
u
xy x
x
=
++9
5
, M(3, 1), M´(7, 4);
1.31.
ur= 1
, M (
2
, 0, 0), M´(0, 1, 1);
1.32.
uxe ye z
yx
=+−
2
, M (3, 0, 2), M´(4, 1, 3);
1.33.
ux yx=+()
22
, M (1, 0), M´(0,5; 0,5).
1.34. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u=ln (e
x
+e
y
) â íà÷àëå êîîðäèíàò ïî íàïðàâëåíèþ
ëó÷à, ñîñòàâëÿþùåãî óãîë 60° ñ îñüþ àáñöèññ.
1.35. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u=arctg (y/x)
â òî÷êå Ì (2, -2) îêðóæíîñòè x
2
+y
2
—4x=0 âäîëü
åå êàñàòåëüíîé â ýòîé òî÷êå â íàïðàâëåíèè âîçðàñòà-
íèÿ àáñöèññû.
1.36. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u=ln (x
2
+y
2
) â òî÷êå Ì (1, 2) ïàðàáîëû y
2
= 4x âäîëü
åå êàñàòåëüíîé â ýòîé òî÷êå â íàïðàâëåíèè âîçðàñòà-
íèÿ àáñöèññû.
1.37. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = arctg(xy)
â òî÷êå Ì (3, -3) ïî íàïðàâëåíèþ ê íà÷àëó êîîðäèíàò.
1.38. Ïîêàçàòü, ÷òî ïðîèçâîäíàÿ ñêàëÿðíîãî ïîëÿ
u=x
2
/a
2
+y
2
/b
2
+z
2
/c
2
â ëþáîé òî÷êå Ì ïî íàïðàâëå-
íèþ ðàäèóñà-âåêòîðà
ρ
r ýòîé òî÷êè ðàâíà 2u/r.
1.39. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u=x
2
/4 +y
2
/9 + z
2
â òî÷êå Ì (1, -2, 3) ïî íàïðàâëå-
íèþ ðàäèóñà-âåêòîðà
ρ
r
ýòîé òî÷êè.
1.40. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u=1/r
ïî íàïðàâëåíèþ, çàäàííîìó åäèíè÷íûì âåêòîðîì
ρ
l
.
1.41. Âû÷èñëèòü ïðîèçâîäíóþ ñôåðè÷åñêîãî ñêàëÿðíîãî
ïîëÿ u(r) ïî íàïðàâëåíèþ, çàäàííîìó åäèíè÷íûì
âåêòîðîì
ρ
l
.
1.42. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
u=(x
2
+y
2
)
2
â òî÷êå Ì (1, -2, 0) ïî íàïðàâëåíèþ ðà-
äèóñà-âåêòîðà
ρ
r
ýòîé òî÷êè.
            xy + x + 9
1.30. u =              ,      M(3, 1), M´(7, 4);
               5x

1.31. u = 1 r,               M ( 2 , 0, 0), M´(0, 1, 1);
1.32. u = xe + ye − z 2 , M (3, 0, 2), M´(4, 1, 3);
              y      x


1.33. u = ( x 2 + y 2 ) x , M (1, 0), M´(0,5; 0,5).
1.34. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
      u = ln (ex + ey) â íà÷àëå êîîðäèíàò ïî íàïðàâëåíèþ
      ëó÷à, ñîñòàâëÿþùåãî óãîë 60° ñ îñüþ àáñöèññ.
1.35. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = arctg (y/x)
      â òî÷êå Ì (2, -2) îêðóæíîñòè x 2 + y 2 — 4x = 0 âäîëü
      åå êàñàòåëüíîé â ýòîé òî÷êå â íàïðàâëåíèè âîçðàñòà-
      íèÿ àáñöèññû.
1.36. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
      u = ln (x 2 + y 2) â òî÷êå Ì (1, 2) ïàðàáîëû y 2 = 4x âäîëü
      åå êàñàòåëüíîé â ýòîé òî÷êå â íàïðàâëåíèè âîçðàñòà-
      íèÿ àáñöèññû.
1.37. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = arctg(xy)
      â òî÷êå Ì (3, -3) ïî íàïðàâëåíèþ ê íà÷àëó êîîðäèíàò.
1.38. Ïîêàçàòü, ÷òî ïðîèçâîäíàÿ ñêàëÿðíîãî ïîëÿ
      u = x2/a2+y2/b2+z2/c2 â ëþáîé òî÷êå Ì ïî íàïðàâëå-
                                   ρ
      íèþ ðàäèóñà-âåêòîðà r ýòîé òî÷êè ðàâíà 2u/r.
1.39. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
      u = x2/4 + y2/9 + z2 â òî÷êå Ì (1, -2, 3) ïî íàïðàâëå-
                                   ρ
      íèþ ðàäèóñà-âåêòîðà r ýòîé òî÷êè.
1.40. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ u = 1/r
                                                              ρ
      ïî íàïðàâëåíèþ, çàäàííîìó åäèíè÷íûì âåêòîðîì l .
1.41. Âû÷èñëèòü ïðîèçâîäíóþ ñôåðè÷åñêîãî ñêàëÿðíîãî
      ïîëÿ u(r) ïî íàïðàâëåíèþ, çàäàííîìó åäèíè÷íûì
                    ρ
      âåêòîðîì l .
1.42. Âû÷èñëèòü ïðîèçâîäíóþ ñêàëÿðíîãî ïîëÿ
      u = (x 2 + y 2) 2 â òî÷êå Ì (1, -2, 0) ïî íàïðàâëåíèþ ðà-
                           ρ
      äèóñà-âåêòîðà        r ýòîé òî÷êè.



                              15