Задачи по векторному анализу. Михайлов В.К - 32 стр.

UptoLike

Рубрика: 

32
2.23. Òî÷å÷íûé çàðÿä, íàõîäÿùèéñÿ â íà÷àëå êîîðäèíàò,
ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ýëåêòðè÷åñêîå
ïîëå
ρ
ρ
Ekrr=
3
, ãäå k — íåêîòîðûé êîýôôèöèåíò. Âû-
÷èñëèòü ïîòîê ýòîãî ïîëÿ ÷åðåç êðóã ðàäèóñîì R, îñü
êîòîðîãî ÿâëÿåòñÿ îñüþ z, à åãî öåíòð ëåæèò íà ðàñ-
ñòîÿíèè z=h îò íà÷àëà êîîðäèíàò.
2.24. Âû÷èñëèòü ïîòîê ïîëÿ
ρρ
arr= /
3
÷åðåç ïëîñêîñòü
z=h 0.
2.25. Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ
ρ
aaaa
xyz
= {, ,}
֌-
ðåç êðóã ðàäèóñîì R, ïåðïåíäèêóëÿðíûé îñè z.
2.26. Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ
ρ
aa
z
= {,, }00
֌-
ðåç ïëîùàäêó S â ôîðìå òðåóãîëüíèêà ñ âåðøèíàìè
â òî÷êàõ M
1
(1, 0, 0), M
2
(0, 2, 0), M
3
(0, 0, 3).
2.27. Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ
ρ
aa
z
= {,, }00
֌-
ðåç âåðõíþþ ïîëóñôåðó x
2
+ y
2
+ z
2
=R
2
.
2.28. Äîêàçàòü, ÷òî ïîòîê îäíîðîäíîãî ïîëÿ
ρ
a
÷åðåç çàì-
êíóòóþ ïîâåðõíîñòü ðàâåí íóëþ.
2.29. Âû÷èñëèòü ïîòîê ïîëÿ
ρ
axyyzzx=+ + +{, ,}
222222
֌-
ðåç ïîâåðõíîñòü êóáà 0 x l, 0 y l, 0 z l.
2.30. Âû÷èñëèòü ïîòîê ïîëÿ
ρ
axyz= {, ,}
333
÷åðåç ïîâåðõíîñòü
êóáà 0 x l, 0 y l, 0 z l.
2.31. Âû÷èñëèòü ïîòîê ïîëÿ
ρ
axyz=−{, , }11
÷åðåç êðóã, ïî-
ëó÷åííûé ñå÷åíèåì øàðà x
2
+ y
2
+ z
2
R
2
ïëîñêîñòüþ
y=x. Íîðìàëü ê êðóãó îáðàçóåò îñòðûé óãîë ñ îð-
òîì
e
x
.
2.32. Âû÷èñëèòü ïîòîê ïîëÿ
ρ
a y zx zx y=+++{,, }
÷åðåç
êðóã, ïîëó÷åííûé ñå÷åíèåì øàðà x
2
+ y
2
+ z
2
1 ïëîñ-
êîñòüþ x + y + z = 1. Íîðìàëü ê êðóãó îáðàçóåò îñò-
ðûé óãîë ñ îðòîì
ρ
e
z
.
2.33. Âû÷èñëèòü ïîòîê ïîëÿ
ρ
axyz= {, ,}
222
÷åðåç òðåóãîëü-
íóþ ïëîùàäêó, âåðøèíû êîòîðîé íàõîäÿòñÿ
â òî÷êàõ Ì
1
(1, 2, 0), Ì
2
(0, 2, 0) è Ì
3
(0, 2, 2).
2.23. Òî÷å÷íûé çàðÿä, íàõîäÿùèéñÿ â íà÷àëå êîîðäèíàò,
      ñîçäàåò â îêðóæàþùåì ïðîñòðàíñòâå ýëåêòðè÷åñêîå
           ρ    ρ
      ïîëå E = kr r 3 , ãäå k — íåêîòîðûé êîýôôèöèåíò. Âû-
        ÷èñëèòü ïîòîê ýòîãî ïîëÿ ÷åðåç êðóã ðàäèóñîì R, îñü
        êîòîðîãî ÿâëÿåòñÿ îñüþ z, à åãî öåíòð ëåæèò íà ðàñ-
        ñòîÿíèè z = h îò íà÷àëà êîîðäèíàò.
                                     ρ ρ 3
2.24.   Âû÷èñëèòü ïîòîê ïîëÿ a = r / r ÷åðåç ïëîñêîñòü
        z = h ≠ 0.
                                                 ρ
2.25.   Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {a x , a y , a z } ÷å-
        ðåç êðóã ðàäèóñîì R, ïåðïåíäèêóëÿðíûé îñè z.
                                                   ρ
2.26.   Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {0,0, a z } ÷å-
        ðåç ïëîùàäêó S â ôîðìå òðåóãîëüíèêà ñ âåðøèíàìè
        â òî÷êàõ M1 (1, 0, 0), M2 (0, 2, 0), M3 (0, 0, 3).
                                                   ρ
2.27.   Âû÷èñëèòü ïîòîê îäíîðîäíîãî ïîëÿ a = {0,0, a z } ÷å-
        ðåç âåðõíþþ ïîëóñôåðó x2 + y2 + z2 = R2.
                                                     ρ
2.28.   Äîêàçàòü, ÷òî ïîòîê îäíîðîäíîãî ïîëÿ a ÷åðåç çàì-
        êíóòóþ ïîâåðõíîñòü ðàâåí íóëþ.
                                   ρ
2.29.   Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2 + y 2, y 2 + z 2, z 2 + x 2} ÷å-
        ðåç ïîâåðõíîñòü êóáà 0 ≤ x ≤ l, 0 ≤ y ≤ l, 0 ≤ z ≤ l.
                                ρ
2.30.   Âû÷èñëèòü ïîòîê ïîëÿ a = {x 3, y3, z 3} ÷åðåç ïîâåðõíîñòü
        êóáà 0 ≤ x ≤ l, 0 ≤ y ≤ l, 0 ≤ z ≤ l.
                                   ρ
2.31.   Âû÷èñëèòü ïîòîê ïîëÿ a = {1,−1, xyz} ÷åðåç êðóã, ïî-
        ëó÷åííûé ñå÷åíèåì øàðà x2 + y2 + z2 ≤ R2 ïëîñêîñòüþ
        y = x. Íîðìàëü ê êðóãó îáðàçóåò îñòðûé óãîë ñ îð-
             ρ
        òîì ex .
                                     ρ
2.32.   Âû÷èñëèòü ïîòîê ïîëÿ a = { y + z, x + z, x + y} ÷åðåç
        êðóã, ïîëó÷åííûé ñå÷åíèåì øàðà x2 + y2 + z2 ≤ 1 ïëîñ-
        êîñòüþ x + y + z = 1. Íîðìàëü ê êðóãó îáðàçóåò îñò-
                            ρ
        ðûé óãîë ñ îðòîì e z .
                                  ρ
2.33.   Âû÷èñëèòü ïîòîê ïîëÿ a = {x 2, y 2, z 2} ÷åðåç òðåóãîëü-
        íóþ ïëîùàäêó, âåðøèíû êîòîðîé íàõîäÿòñÿ
        â òî÷êàõ Ì1 (1, 2, 0), Ì2 (0, 2, 0) è Ì3 (0, 2, 2).


                              32