Задачи по векторному анализу. Михайлов В.К - 35 стр.

UptoLike

Рубрика: 

35
Ñâîéñòâà äèâåðãåíöèè
1. Ïóñòü
ρ
a
è
ρ
b
— äâà âåêòîðíûõ ïîëÿ, òîãäà
div( ) div div
ρ
ρ
ρ
ρ
ab a b+= +
.
2. Ïóñòü
ρ
axyz(, ,)
— âåêòîðíîå ïîëå, à u (x, y, z) — ñêà-
ëÿðíîå ïîëå. Òîãäà
div( ) div gradua u a a u
ρρρ
=+
,
èëè â ñèìâîëè÷åñêîé çàïèñè
∇=+()ua u a a u
ρρρ
.
Çàäà÷è
Íàéòè äèâåðãåíöèþ ñëåäóþùèõ âûðàæåíèé, â êîòîðûõ
ρ
a
è
ρ
c
— ïîñòîÿííûå âåêòîðû,
ρ
r
— ðàäèóñ-âåêòîð, f (r) —
ñôåðè÷åñêàÿ ñêàëÿðíàÿ ôóíêöèÿ:
2.38.
r
; 2.44.
()frc
ρ
;
2.39.
/
ρ
rr
; 2.45.
v
()
ρρ
ra×
;
2.40.
v
ln
ρ
rr
; 2.46.
v
()
ρρρ
cra××
;
2.41.
rc
2
ρ
; 2.47.
v
()
ρρρ
rra××
;
2.42.
()
ρρρ
ac r
; 2.48.
()rr a
ρρ
×
;
2.43.
()
ρρ ρ
rc r
; 2.49.
()( )fr r a
ρρ
×
.
2.50. Âû÷èñëèòü äèâåðãåíöèþ ïîëÿ ñêîðîñòåé
ρ
v
òî÷åê
òâåðäîãî òåëà, âðàùàþùåãîñÿ âîêðóã îñè z.
2.51. Âû÷èñëèòü
div
ρ
E
, ãäå
ρ
ρ
Eqr r= ()4
0
3
πε
— ýëåêòðè÷åñ-
êîå ïîëå òî÷å÷íîãî çàðÿäà q.
2.52. Âû÷èñëèòü
div
ρ
B
, ãäå
ρ
ρρ
Bkvrr
3
— ìàãíèòíîå ïîëå
òî÷å÷íîãî çàðÿäà, äâèæóùåãîñÿ ñ ïîñòîÿííîé ñêîðî-
ñòüþ
ρ
v
.
                     Ñâîéñòâà äèâåðãåíöèè
                  ρ       ρ
        1. Ïóñòü a è b — äâà âåêòîðíûõ ïîëÿ, òîãäà
                            ρ ρ         ρ       ρ
                     div( a + b ) = div a + div b .
                  ρ
        2. Ïóñòü a ( x , y, z ) — âåêòîðíîå ïîëå, à u (x, y, z) — ñêà-
           ëÿðíîå ïîëå. Òîãäà
                      ρ           ρ ρ
                 div(ua ) = u div a + a ⋅ grad u ,
           èëè â ñèìâîëè÷åñêîé çàïèñè
                          ρ          ρ ρ
                      ∇( ua ) = u∇ ⋅ a + a ⋅ ∇u .

                              Çàäà÷è
     • Íàéòè äèâåðãåíöèþ ñëåäóþùèõ âûðàæåíèé, â êîòîðûõ
ρ   ρ                       ρ
a è c — ïîñòîÿííûå âåêòîðû, r — ðàäèóñ-âåêòîð, f (r) —
ñôåðè÷åñêàÿ ñêàëÿðíàÿ ôóíêöèÿ:
             ρ                                       ρ
     2.38. r ;                         2.44. f ( r )c ;
            ρ                                   ρ ρ
     2.39. r / r ;                     2.45. v( r × a ) ;
             ρ                                 ρ ρ ρ
     2.40. v r ln r ;                  2.46. v c × ( r × a ) ;
              2ρ                               ρ ρ ρ
     2.41. r c ;                       2.47. v r × ( r × a ) ;
             ρρ ρ                                ρ ρ
     2.42. a ( c ⋅ r ) ;               2.48. r ( r × a ) ;
            ρρ ρ                                      ρ ρ
     2.43. r ( c ⋅ r ) ;               2.49. f ( r )( r × a ) .

                                                                  ρ
     2.50. Âû÷èñëèòü äèâåðãåíöèþ ïîëÿ ñêîðîñòåé v òî÷åê
           òâåðäîãî òåëà, âðàùàþùåãîñÿ âîêðóã îñè z.
                           ρ      ρ    ρ
     2.51. Âû÷èñëèòü div E , ãäå E = qr ( 4πε 0 r 3 ) — ýëåêòðè÷åñ-
           êîå ïîëå òî÷å÷íîãî çàðÿäà q.
                           ρ     ρ    ρ ρ
     2.52. Âû÷èñëèòü div B , ãäå B = kv × r r 3 — ìàãíèòíîå ïîëå
           òî÷å÷íîãî çàðÿäà, äâèæóùåãîñÿ ñ ïîñòîÿííîé ñêîðî-
                  ρ
           ñòüþ v .



                                  35