Сопротивление материалов. Энергетические методы расчета стержневых систем. Миляев А.С. - 18 стр.

UptoLike

Составители: 

18
По закону сохранения энергии:
n
1j
j
Δ
j
P
2
1
UΔ
. (2.15)
Это и есть теорема Клапейрона.
Словесная формулировка теоремы Клапейрона: приращение
потенциальной энергии деформации линейно-упругого тела,
нагруженного системой статически приложенных внешних сил, равна
работе этих сил на соответствующих перемещениях. Числовое
значение приращения потенциальной энергии деформации линейно-
упругого тела равно полусумме произведений окончательных значений
сил на окончательные значения перемещений.
Прикладное значение теоремы Клапейрона: приращение
потенциальной энергии деформации тела, т.е. его внутренней энергии,
определяется через работу внешних сил на соответствующих им
перемещениях; таким образом, внутреннюю энергию деформируемого
тела можно определить посредством измерения величин внешних сил и
перемещений точек приложения этих сил.
2.5. Теорема о взаимности работ (теорема Бетти).
На линейно-упругое тело, закрепленное в пространстве, действуют
статически приложенные силы P
j
, P
k
. Эти силы вызывают перемещения
jj
,
jk
,
kk
,
kj
(рис. 2.5).
Рис. 2.5. К доказательству теоремы о взаимности работ.
Снимем силы P
j
, P
k
и приложим к телу только силу P
j
. Cила P
j
вызовет перемещения Δ
jj
и Δ
kj
и произведет работу 0,5P
j
Δ
jj
.