Обыкновенные дифференциальные уравнения первого порядка. Мухарлямов Р.К - 37 стр.

UptoLike

Рубрика: 

y
0
y
0
= 1 +
p
1 + y/x, y
0
= 1
p
1 + y/x,
x(x + y) > 0,
(2x + y C) 2
p
x
2
+ xy = 0, (2x + y C) + 2
p
x
2
+ xy = 0.
(y C)
2
= 4Cx
C
(y C)
2
= 4Cx, C y = 2x.
C x + y = 0. x + y = 0
x
x = f(y, y
0
).
p =
dy
dx
x = f(y, p)
dx =
f
y
dy +
f
p
dp.
dx =
dy
p
dy
p
=
f
y
dy +
f
p
dp, x = f(y, p),
y = ϕ(p, C), x = f(ϕ(p, C), p).
p
Φ(x, y, C) = 0.
y
y = f(x, y
0
),
pdx =
f
x
dx +
f
p
dp, y = f(x, p).
                                                    37


  Ðåøåíèå.   Ðåøàÿ êâàäðàòíîå óðàâíåíèå îòíîñèòåëüíî y 0 , èìååì äâà îäíîðîäíûõ óðàâ-
íåíèÿ:
                                        p                             p
                       y 0 = −1 +        1 + y/x,        y 0 = −1 −      1 + y/x,
îïðåäåëåííûõ â îáëàñòè x(x + y) > 0, îáùèå èíòåãðàëû êîòîðûõ
                           p                              p
           (2x + y − C) − 2 x2 + xy = 0, (2x + y − C) + 2 x2 + xy = 0.

Ïåðåìíîæàÿ, ïîëó÷àåì îáùèé èíòåãðàë äàííîãî óðàâíåíèÿ

                                           (y − C)2 = 4Cx

(ñåìåéñòâî ïàðàáîë). Äèôôåðåíöèðóÿ îáùèé èíòåãðàë ïî C , ïîëó÷èì ñèñòåìó óðàâíåíèé

                                     (y − C)2 = 4Cx,       C − y = 2x.

Èñêëþ÷èì C , íàéäåì îñîáûé èíòåãðàë x + y = 0. Ïðîâåðêà ïîêàçûâàåò, ÷òî x + y = 0 åñòü
ðåøåíèå äàííîãî óðàâíåíèÿ.


                       5.2           Ìåòîä ââåäåíèÿ ïàðàìåòðà
Ïóñòü óðàâíåíèå (5.1) ðàçðåøèìî îòíîñèòåëüíî ïåðåìåííîé x, òîãäà

                                             x = f (y, y 0 ).                          (5.7)

Åñëè ââåñòè ïàðàìåòð p =      dy
                              dx
                                 ,   òî ïîëó÷èì x = f (y, p). Âîçüì¼ì ïîëíûé äèôôåðåíöèàë
                                                 ∂f      ∂f
                                          dx =      dy +    dp.
                                                 ∂y      ∂p
Ñäåëàåì çàìåíó dx =   dy
                       p
                         .    ðåçóëüòàòå ïîëó÷èì ñèñòåìó óðàâíåíèé
                               dy   ∂f      ∂f
                                  =    dy +    dp,           x = f (y, p),             (5.8)
                                p   ∂y      ∂p
èç êîòîðîé îïðåäåëÿåòñÿ ðåøåíèå óðàâíåíèÿ (5.7) â ïàðàìåòðè÷åñêîì âèäå:

                                 y = ϕ(p, C),      x = f (ϕ(p, C), p).                 (5.9)

Èñêëþ÷èâ ïàðàìåòð p, ïîëó÷èì îáùèé èíòåãðàë

                                            Φ(x, y, C) = 0.                           (5.10)

  Åñëè óðàâíåíèå (5.1) ðàçðåøèìî îòíîñèòåëüíî ïåðåìåííîé y ,

                                             y = f (x, y 0 ),                         (5.11)

òî ñèñòåìà óðàâíåíèé âûãëÿäèò èíà÷å:
                                         ∂f      ∂f
                              pdx =         dx +    dp,         y = f (x, p).         (5.12)
                                         ∂x      ∂p