Обыкновенные дифференциальные уравнения первого порядка. Мухарлямов Р.К - 41 стр.

UptoLike

Рубрика: 

dy = ψ(t)dx = ψ(t)ϕ
0
t
(t)dt y =
R
ψ(t)ϕ
0
t
(t)dt + C
x = ϕ(t),
y =
R
ψ(t)ϕ
0
t
(t)dt + C.
F (y, y
0
) = 0
y = ϕ(t),
y
0
= ψ(t)
dy = ϕ(t)
0
t
dt,
dy = ψ(t)dx
dy
dx =
ϕ
0
t
(t)dt
ψ(t)
.
y = ϕ(t),
x =
R
ϕ
0
t
(t)dt
ψ(t)
+ C.
ax
α
+ by
0β
= c,
a b c α β
sin
2
t + cos
2
= 1,
1
cos
2
t
tg
2
t = 1.
a > 0 b > 0
ax
α
= c cos
2
t,
by
0β
= c sin
2
t
x =
c
a
cos
2
t
1
,
y
0
=
c
b
sin
2
t
1
.
y
02
+ x
2
= 1.
x = cos t,
y
0
= sin t
dx = sin tdt,
dy = sin tdx.
                                              41


Îòñþäà dy = ψ(t)dx = ψ(t)ϕ0t (t)dt ⇒ y =           ψ(t)ϕ0t (t)dt + C . Òàêèì îáðàçîì, ïîëó÷àåì
                                              R

ðåøåíèå â ïàðàìåòðè÷åñêîì âèäå
                            
                             x = ϕ(t),
                                                                                        (5.25)
                             y = R ψ(t)ϕ0 (t)dt + C.
                                                    t

  Àíàëîãè÷íî äëÿ óðàâíåíèÿ F (y, y 0 ) = 0:
                                           
                         y = ϕ(t),          dy = ϕ(t)0 dt,
                                                       t
                                          ⇒                                             (5.26)
                         y 0 = ψ(t)         dy = ψ(t)dx

Èñêëþ÷àåì èç ñèñòåìû dy
                                              ϕ0t (t)dt
                                       dx =             .                               (5.27)
                                               ψ(t)
Òàêèì îáðàçîì,
                                   
                                    y = ϕ(t),
                                                                                        (5.28)
                                    x = R ϕ0t (t)dt + C.
                                            ψ(t)

Âîçíèêàåò âîïðîñ: êàê íàéòè ïàðàìåòðèçàöèþ èñõîäíîãî óðàâíåíèÿ? Ìîæíî âûäåëèòü
íåñêîëüêî ÷àñòíûõ ñëó÷àåâ.
  1.   Ïóñòü óðàâíåíèå, íàïðèìåð, èìååò âèä

                                      axα + by 0β = c,

ãäå a, b, c, α è β  ïîñòîÿííûå.  ýòîì ñëó÷àå èñïîëüçóþòñÿ òðèãîíîìåòðè÷åñêèå ôîðìóëû
                                     
                                      sin2 t + cos2 = 1,
                                           1                                      (5.29)
                                                     2
                                               − tg   t = 1.
                                         cos2 t
  Åñëè a > 0, b > 0, òî äåëàåòñÿ çàìåíà
                                            
                                             x = c cos2 t
                                                            1/α
                        axα = c cos2 t,                           ,
                                            
                                          ⇒        ac       1/β                       (5.30)
                        by 0β = c sin2 t    y0 =
                                                      sin2 t      .
                                                     b
Ïðèìåð   13. Íàéòè ðåøåíèå óðàâíåíèÿ

                                       y 02 + x2 = 1.

  Ðåøåíèå.   Ïàðàìåòðèçóåì óðàâíåíèå
                                        
                          x = cos t,     dx = − sin tdt,
                                       ⇒                                                (5.31)
                          y 0 = sin t    dy = sin tdx.