ВУЗ:
Составители:
Рубрика:
z
0
=
dz
dx
= p dz = pdx z = f(p)
p dz = f
0
(p)dp = pdx
dx =
f
0
(p)dp
p
⇒ x =
Z
f
0
(p)dp
p
+ C
1
.
y
(n−1)
= f(p).
z p
x =
R
f
0
(p)dp
p
+ C
1
,
y = ϕ
n
(p, C
2
, . . . , C
n
).
y
(n−1)
= ϕ(t), y
(n)
= ψ(t).
dy
(n−1)
= y
(n)
dx
dx =
y
(n−1)
y
(n)
=
ϕ
0
(t)dt
ψ(t)
, x =
Z
ϕ
0
(t)dt
ψ(t)
+ C
1
.
x =
R
ϕ
0
(t)dt
ψ(t)
+ C
1
,
y = φ(t, C
2
, . . . , C
n
).
F (y
(n−2)
, y
(n)
) = 0
y
(n)
y
(n)
= f(y
(n−2)
).
y
(n−2)
= z(x)
z
00
xx
= f(z).
14
Ââåäåì ïàðàìåòð z 0 = dz
dx
= p, îòêóäà dz = pdx, z = f (p). Äèôôåðåíöèðóåì ïîñëåäíåå
âûðàæåíèå ïî p : dz = f (p)dp = pdx. Îòñþäà
0
f 0 (p)dp f 0 (p)dp
Z
dx = ⇒x= + C1 . (1.29)
p p
Óðàâíåíèå (1.28) ìîæíî ïåðåïèñàòü êàê
y (n−1) = f (p). (1.30)
Ó÷èòûâàÿ óðàâíåíèÿ (1.29) è (1.30), ïðèìåíèì öåïü ðàñ÷åòîâ ïî ôîðìóëå (1.24) (âìåñòî
ïàðàìåòðà z ôèãóðèðóåò ïàðàìåòð p ).  ðåçóëüòàòå ïîëó÷àåì ðåøåíèå â ïàðàìåòðè÷åñêîì
âèäå:
x = R f 0 (p)dp + C ,
p 1
y = ϕ (p, C , . . . , C ).
n 2 n
Óðàâíåíèÿ, äîïóñêàþùèå ïàðàìåòðè÷åñêîå ïðåäñòàâëåíèå
Ïóñòü äàííûé òèï óðàâíåíèÿ äîïóñêàåò ïàðàìåòðè÷åñêîå ïðåäñòàâëåíèå:
y (n−1) = ϕ(t), y (n) = ψ(t).
Ïðèíèìàÿ âî âíèìàíèå dy (n−1) = y (n) dx, ïîëó÷èì
y (n−1) ϕ0 (t)dt ϕ0 (t)dt
Z
dx = (n) = , x= + C1 .
y ψ(t) ψ(t)
Ïî ôîðìóëå (1.24) íàõîäèì ðåøåíèå â ïàðàìåòðè÷åñêîé ôîðìå:
x = R ϕ0 (t)dt + C ,
ψ(t) 1
y = φ(t, C , . . . , C ).
2 n
1.5 Óðàâíåíèÿ âèäà F (y (n−2) , y (n) ) = 0
Óðàâíåíèÿ, ðàçðåøåííûå îòíîñèòåëüíî y (n)
Ðàññìîòðèì óðàâíåíèå âèäà
y (n) = f (y (n−2) ).
Äåëàåì çàìåíó y (n−2) = z(x), ïîëó÷àåì óðàâíåíèå
00
zxx = f (z). (1.31)
Страницы
- « первая
- ‹ предыдущая
- …
- 12
- 13
- 14
- 15
- 16
- …
- следующая ›
- последняя »
