Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 14 стр.

UptoLike

Рубрика: 

z
0
=
dz
dx
= p dz = pdx z = f(p)
p dz = f
0
(p)dp = pdx
dx =
f
0
(p)dp
p
x =
Z
f
0
(p)dp
p
+ C
1
.
y
(n1)
= f(p).
z p
x =
R
f
0
(p)dp
p
+ C
1
,
y = ϕ
n
(p, C
2
, . . . , C
n
).
y
(n1)
= ϕ(t), y
(n)
= ψ(t).
dy
(n1)
= y
(n)
dx
dx =
y
(n1)
y
(n)
=
ϕ
0
(t)dt
ψ(t)
, x =
Z
ϕ
0
(t)dt
ψ(t)
+ C
1
.
x =
R
ϕ
0
(t)dt
ψ(t)
+ C
1
,
y = φ(t, C
2
, . . . , C
n
).
F (y
(n2)
, y
(n)
) = 0
y
(n)
y
(n)
= f(y
(n2)
).
y
(n2)
= z(x)
z
00
xx
= f(z).
                                                 14


Ââåäåì ïàðàìåòð z 0 =    dz
                         dx
                              = p, îòêóäà dz = pdx, z = f (p). Äèôôåðåíöèðóåì ïîñëåäíåå
âûðàæåíèå ïî p : dz = f (p)dp = pdx. Îòñþäà
                          0


                                   f 0 (p)dp                 f 0 (p)dp
                                                        Z
                              dx =           ⇒x=                       + C1 .            (1.29)
                                        p                         p
Óðàâíåíèå (1.28) ìîæíî ïåðåïèñàòü êàê

                                         y (n−1) = f (p).                                (1.30)

Ó÷èòûâàÿ óðàâíåíèÿ (1.29) è (1.30), ïðèìåíèì öåïü ðàñ÷åòîâ ïî ôîðìóëå (1.24) (âìåñòî
ïàðàìåòðà z ôèãóðèðóåò ïàðàìåòð p ).  ðåçóëüòàòå ïîëó÷àåì ðåøåíèå â ïàðàìåòðè÷åñêîì
âèäå:
                                  
                                   x = R f 0 (p)dp + C ,
                                               p       1
                                   y = ϕ (p, C , . . . , C ).
                                         n         2       n


           Óðàâíåíèÿ, äîïóñêàþùèå ïàðàìåòðè÷åñêîå ïðåäñòàâëåíèå


Ïóñòü äàííûé òèï óðàâíåíèÿ äîïóñêàåò ïàðàìåòðè÷åñêîå ïðåäñòàâëåíèå:

                                  y (n−1) = ϕ(t),       y (n) = ψ(t).

Ïðèíèìàÿ âî âíèìàíèå dy (n−1) = y (n) dx, ïîëó÷èì

                            y (n−1) ϕ0 (t)dt                       ϕ0 (t)dt
                                                              Z
                        dx = (n) =           ,          x=                  + C1 .
                             y       ψ(t)                           ψ(t)
Ïî ôîðìóëå (1.24) íàõîäèì ðåøåíèå â ïàðàìåòðè÷åñêîé ôîðìå:
                             
                              x = R ϕ0 (t)dt + C ,
                                                 ψ(t)          1
                                    y = φ(t, C , . . . , C ).
                                               2           n



                   1.5        Óðàâíåíèÿ âèäà                F (y (n−2) , y (n) ) = 0

                   Óðàâíåíèÿ, ðàçðåøåííûå îòíîñèòåëüíî                           y (n)

Ðàññìîòðèì óðàâíåíèå âèäà
                                        y (n) = f (y (n−2) ).

Äåëàåì çàìåíó y (n−2) = z(x), ïîëó÷àåì óðàâíåíèå
                                            00
                                           zxx = f (z).                                  (1.31)