Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 21 стр.

UptoLike

Рубрика: 

x = sin t 2t,
y =
3
8
sin 2t
t
4
cos 2t + (C
1
2 t
2
) sin t +
2C
1
+
1
2
t +
2t
3
3
+ C
2
.
y =
C
0
9
sin 3x +
C
1
x
2
2
+ C
2
x + C
3
y = x + C
0
arctg x + C
1
y =
1
4x
2
+ C
0
ln x + C
1
ln
yC
1
y+C
2
= 2C
1
x + C
2
p
C
2
0
y
2
1 = ±C
2
0
x + C
1
ctg y = 2(1 x)
y
2
1 = e
4x
y = t
3
/3 + C
1
t
2
/2 + C
3
, x = t
2
/2 + C
1
y =
2
3
x + C
x =
2
3
p + C
1
,
y =
2p
3
27
+
4
9
p + C
0
.
y = sin(x + C
1
) + C
2
x + C
3
y =
C
1
(1+C
2
e
x
)
1C
2
e
x
y = C
ln y = x/C
1
ln |1+C
1
x|
C
2
1
+ C
2
y = C
0
e
x
2
/2
y = C
2
xe
C
1
/x
2C
1
C
2
y = C
2
2
|x|
2+C
1
+ |x|
2C
1
x
2
y = C
1
tg(C
1
ln C
2
x) C
2
(x
2
y + C
1
)|x|
2C
1
= x
2
y C
1
R
e
y
2
/2
dy = C
1
x + C
2
(x C
1
)
2
+ (y C
2
)
2
= C
2
3
y = e
sin x
C
2
+ C
1
R
e
sin x
dx
                                                               21

     
      x = sin t − 2t,
4.
      y = 3 sin 2t − t cos 2t + (C − 2 − t2 ) sin t + −2C + 1  t +     2t3
           8           4           1                      1  2            3
                                                                               + C2 .
                                C 1 x2
5.   y=   − C90   sin 3x +        2
                                         + C2 x + C3 .
6.   y = x + C0 arctg x + C1 .
7.   y=   1
        4x2
                + C0 ln x + C1 .
8. ln
      y−C1
                = 2C1 x + C2 .
   p y+C2
9.    C02 y 2   − 1 = ±C02 x + C1 .
10.   ctg y = 2(1 − x).
11.   y 2 − 1 = e4x .
12.   y = t−3 /3 + C1 t−2 /2 + C3 , x = t−2 /2 + C1 .
                      x = 2p + C ,
                                      1
13.   y = 23 x + C ,           3
                      y = 2p3 + 4 p + C .
                               27   9     0
14.   y = sin(x + C1 ) + C2 x + C3 .
           C1 (1+C2 ex )
15.   y=     1−C2 ex
                         ,      y = C.
                             ln |1+C1 x|                      2 /2
16.   ln y = x/C1 −               C12
                                           + C2 , y = C0 ex          .
17.   y = C2 xe    −C1 /x
                            .
18.   2C1 C2 y = C22 |x|2+C1 + |x|2−C1 .
19.   x2 y = C1 tg(C1 ln C2 x), C2 (x2 y + C1 )|x|2C1 = x2 y − C1 .
      R −y2 /2
20.     e      dy = C1 x + C2 .
21.   (x − C1 )2 + (y − C2 )2 = C32 .
      y = e− sin x C2 + C1 esin x dx .
                           R          
22.