Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 34 стр.

UptoLike

Рубрика: 

f(x)
y = C
1
y
1
+ C
2
y
2
+ . . . + C
n
y
n
y = C
1
(x)y
1
+ C
2
(x)y
2
+ . . . + C
n
(x)y
n
.
C
i
(x)
C
0
1
y
1
+ C
0
2
y
2
+ . . . + C
0
n
y
n
= 0,
C
0
1
y
0
1
+ C
0
2
y
0
2
+ . . . + C
0
n
y
0
n
= 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C
0
1
y
(n2)
1
+ C
0
2
y
(n2)
2
+ . . . + C
0
n
y
(n2)
n
= 0,
C
0
1
y
(n1)
1
+ C
0
2
y
(n1)
2
+ . . . + C
0
n
y
(n1)
n
= f(x).
y
00
y =
e
x
e
x
+ 1
.
y
00
y = 0.
λ
2
1 = 0
λ
1
= 1 λ
2
= 1
y
0
= C
1
e
x
+ C
2
e
x
.
y = C
1
(x)e
x
+ C
2
(x)e
x
.
C
1
(x) C
2
(x)
C
0
1
(x)e
x
+ C
0
2
(x)e
x
= 0,
C
0
1
(x)e
x
C
0
2
(x)e
x
=
e
x
e
x
+1
.
C
0
1
(x) =
1
2
1
e
x
+1
,
C
0
2
(x) =
1
2
e
2x
e
x
+1
.
                                                  34


                                Ìåòîä âàðèàöèè ïîñòîÿííûõ


Íåîäíîðîäíîå óðàâíåíèå (2.5) ñ ëþáîé ïðàâîé ÷àñòüþ f (x) ìîæåò áûòü ðåøåíî ìåòîäîì
âàðèàöèè ïîñòîÿííûõ. Ñíà÷àëà íàõîäèì îáùåå ðåøåíèå

                                   y = C1 y1 + C2 y2 + . . . + Cn yn

ñîîòâåòñòâóþùåãî îäíîðîäíîãî óðàâíåíèÿ. Òîãäà îáùåå ðåøåíèå óðàâíåíèÿ (2.5) èùåòñÿ
â âèäå
                             y = C1 (x)y1 + C2 (x)y2 + . . . + Cn (x)yn .

Ôóíêöèè Ci (x) îïðåäåëÿþòñÿ èç ñèñòåìû
                    
                    
                    
                       C10 y1 + C20 y2 + . . . + Cn0 yn = 0,
                    
                    
                        C10 y10 + C20 y20 + . . . + Cn0 yn0 = 0,
                    
                    
                    
                    
                    
                        ..............................
                    
                    
                     C10 y1(n−2) + C20 y2(n−2) + . . . + Cn0 yn(n−2) = 0,
                    
                    
                    
                    
                    
                     C 0 y (n−1) + C 0 y (n−1) + . . . + C 0 y (n−1) = f (x).
                    
                          1 1             2 2                  n n

Ïðèìåð   11. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ
                                                         ex
                                          y 00 − y =          .                  (2.34)
                                                       ex + 1
   Ðåøåíèå.   Íàéäåì îáùåå ðåøåíèå ñîîòâåòñòâóþùåãî îäíîðîäíîãî óðàâíåíèÿ

                                             y 00 − y = 0.

Åãî õàðàêòåðèñòè÷åñêîå óðàâíåíèå
                                             λ2 − 1 = 0

èìååò êîðíè λ1 = 1, λ2 = −1. Ïîýòîìó

                                        y0 = C1 ex + C2 e−x .

Îáùåå ðåøåíèå (2.34) èùåì â âèäå

                                     y = C1 (x)ex + C2 (x)e−x .                  (2.35)

   Ñîñòàâèì ñèñòåìó óðàâíåíèé íà ôóíêöèè C1 (x) è C2 (x):
                                                  
                 C 0 (x)ex + C 0 (x)e−x = 0,       C 0 (x) = 1 1 ,
                     1         2                      1        2 ex +1
                                                 ⇒
                 C 0 (x)ex − C 0 (x)e−x = ex .     C 0 (x) = − 1 e2x .
                     1         2           ex +1      2           2 ex +1