ВУЗ:
Составители:
Рубрика:
f(x)
y = C
1
y
1
+ C
2
y
2
+ . . . + C
n
y
n
y = C
1
(x)y
1
+ C
2
(x)y
2
+ . . . + C
n
(x)y
n
.
C
i
(x)
C
0
1
y
1
+ C
0
2
y
2
+ . . . + C
0
n
y
n
= 0,
C
0
1
y
0
1
+ C
0
2
y
0
2
+ . . . + C
0
n
y
0
n
= 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C
0
1
y
(n−2)
1
+ C
0
2
y
(n−2)
2
+ . . . + C
0
n
y
(n−2)
n
= 0,
C
0
1
y
(n−1)
1
+ C
0
2
y
(n−1)
2
+ . . . + C
0
n
y
(n−1)
n
= f(x).
y
00
− y =
e
x
e
x
+ 1
.
y
00
− y = 0.
λ
2
− 1 = 0
λ
1
= 1 λ
2
= −1
y
0
= C
1
e
x
+ C
2
e
−x
.
y = C
1
(x)e
x
+ C
2
(x)e
−x
.
C
1
(x) C
2
(x)
C
0
1
(x)e
x
+ C
0
2
(x)e
−x
= 0,
C
0
1
(x)e
x
− C
0
2
(x)e
−x
=
e
x
e
x
+1
.
⇒
C
0
1
(x) =
1
2
1
e
x
+1
,
C
0
2
(x) = −
1
2
e
2x
e
x
+1
.
34 Ìåòîä âàðèàöèè ïîñòîÿííûõ Íåîäíîðîäíîå óðàâíåíèå (2.5) ñ ëþáîé ïðàâîé ÷àñòüþ f (x) ìîæåò áûòü ðåøåíî ìåòîäîì âàðèàöèè ïîñòîÿííûõ. Ñíà÷àëà íàõîäèì îáùåå ðåøåíèå y = C1 y1 + C2 y2 + . . . + Cn yn ñîîòâåòñòâóþùåãî îäíîðîäíîãî óðàâíåíèÿ. Òîãäà îáùåå ðåøåíèå óðàâíåíèÿ (2.5) èùåòñÿ â âèäå y = C1 (x)y1 + C2 (x)y2 + . . . + Cn (x)yn . Ôóíêöèè Ci (x) îïðåäåëÿþòñÿ èç ñèñòåìû C10 y1 + C20 y2 + . . . + Cn0 yn = 0, C10 y10 + C20 y20 + . . . + Cn0 yn0 = 0, .............................. C10 y1(n−2) + C20 y2(n−2) + . . . + Cn0 yn(n−2) = 0, C 0 y (n−1) + C 0 y (n−1) + . . . + C 0 y (n−1) = f (x). 1 1 2 2 n n Ïðèìåð 11. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ ex y 00 − y = . (2.34) ex + 1 Ðåøåíèå. Íàéäåì îáùåå ðåøåíèå ñîîòâåòñòâóþùåãî îäíîðîäíîãî óðàâíåíèÿ y 00 − y = 0. Åãî õàðàêòåðèñòè÷åñêîå óðàâíåíèå λ2 − 1 = 0 èìååò êîðíè λ1 = 1, λ2 = −1. Ïîýòîìó y0 = C1 ex + C2 e−x . Îáùåå ðåøåíèå (2.34) èùåì â âèäå y = C1 (x)ex + C2 (x)e−x . (2.35) Ñîñòàâèì ñèñòåìó óðàâíåíèé íà ôóíêöèè C1 (x) è C2 (x): C 0 (x)ex + C 0 (x)e−x = 0, C 0 (x) = 1 1 , 1 2 1 2 ex +1 ⇒ C 0 (x)ex − C 0 (x)e−x = ex . C 0 (x) = − 1 e2x . 1 2 ex +1 2 2 ex +1
Страницы
- « первая
- ‹ предыдущая
- …
- 32
- 33
- 34
- 35
- 36
- …
- следующая ›
- последняя »