Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 35 стр.

UptoLike

Рубрика: 

C
1
(x) =
x
2
1
2
ln(e
x
+ 1) + C
1
,
C
2
(x) =
1
2
e
x
+
1
2
ln(e
x
+ 1) + C
2
.
C
1
(x) C
2
(x)
y =
1
2
((x ln(e
x
+ 1))e
x
+ (1 + ln(e
x
+ 1))e
x
) + C
1
e
x
+ C
2
e
x
.
y
00
+ y = 1/ sin x
y
00
+ 2y
0
+ y = e
x
/x
y
00
+ 6y
0
+ 8y = 4e
2x
(2 + e
2x
)
1
y = (C
1
+ ln |sin x|) sin x + (C
2
x) cos x y = (C
1
+ C
2
x)e
x
+ xe
x
ln |x|
y = C
1
e
2x
+ C
2
e
4x
e
2x
ln[(e
2x
+ 2)e
2x
] e
4x
ln(e
2x
+ 2)
x
n
y
(n)
+ a
1
x
n1
y
(n1)
+ a
2
x
n2
y
(n2)
+ . . . + a
n1
xy
0
+ a
n
y = f(x)
x = e
t
x > 0 x = e
t
x < 0
λ(λ 1)(λ 2) . . . (λ n + 1) + . . . + a
n2
λ(λ 1) + a
n1
λ + a
n
= 0.
x
k
y
(k)
k 1 λ(λ 1)(λ 2) . . . (λ k + 1)
x
3
y
000
x
2
y
00
+ 2xy
0
2y = x
3
.
λ(λ 1)(λ 2) λ(λ 1) + 2λ 2 = 0 (λ 1)
2
(λ 2) = 0
λ
1
= λ
2
= 1, λ
3
= 2.
                                                       35


Èíòåãðèðóÿ, èìååì
                                 
                                  C (x) = x − 1 ln(ex + 1) + C ,
                                    1      2    2                1
                                  C (x) = − 1 ex + 1 ln(ex + 1) + C .
                                    2        2      2               2

Ïîäñòàâëÿåì ýòè çíà÷åíèÿ C1 (x) è C2 (x) â ôîðìóëó (2.35), ïîëó÷àåì îáùåå ðåøåíèå óðàâ-
íåíèÿ (2.34) â âèäå
                    1
                 y = ((x − ln(ex + 1))ex + (−1 + ln(ex + 1))e−x ) + C1 ex + C2 e−x .
                    2
  Íàéòè ðåøåíèÿ óðàâíåíèé:

  48.    y 00 + y = 1/ sin x.
  49.    y 00 + 2y 0 + y = e−x /x.
  50.    y 00 + 6y 0 + 8y = 4e−2x (2 + e2x )−1 .
  Îòâåòû: 48.        y = (C1 + ln | sin x|) sin x + (C2 − x) cos x. 49. y = (C1 + C2 x)e−x + xe−x ln |x|.
50.   y = C1 e−2x + C2 e−4x − e−2x ln[(e2x + 2)e2x ] − e−4x ln(e2x + 2).


                                     2.3     Óðàâíåíèå Ýéëåðà


Îïðåäåëåíèå      2.2. Óðàâíåíèå âèäà

                 xn y (n) + a1 xn−1 y (n−1) + a2 xn−2 y (n−2) + . . . + an−1 xy 0 + an y = f (x)   (2.36)

íàçûâàåòñÿ óðàâíåíèåì Ýéëåðà.
  Óðàâíåíèå Ýéëåðà ñâîäèòñÿ ê ëèíåéíîìó óðàâíåíèþ ñ ïîñòîÿííûìè êîýôôèöèåíòàìè
çàìåíîé íåçàâèñèìîãî ïåðåìåííîãî x = et ïðè x > 0 (èëè x = −et ïðè x < 0). Äëÿ
ïîëó÷åííîãî óðàâíåíèÿ ñ ïîñòîÿííûìè êîýôôèöèåíòàìè õàðàêòåðèñòè÷åñêîå óðàâíåíèå
èìååò âèä

              λ(λ − 1)(λ − 2) . . . (λ − n + 1) + . . . + an−2 λ(λ − 1) + an−1 λ + an = 0.

Ïðè ñîñòàâëåíèè ýòîãî óðàâíåíèÿ êàæäîå ïðîèçâåäåíèå xk y (k) â óðàâíåíèè (2.36) çàìåíÿ-
åòñÿ íà ïðîèçâåäåíèå k óáûâàþùèõ íà 1 ÷èñåë: λ(λ − 1)(λ − 2) . . . (λ − k + 1).
Ïðèìåð     12. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ

                                      x3 y 000 − x2 y 00 + 2xy 0 − 2y = x3 .                       (2.37)

  Ðåøåíèå.      Ñîñòàâëÿåì õàðàêòåðèñòè÷åñêîå óðàâíåíèå è ðåøàåì åãî:

                λ(λ − 1)(λ − 2) − λ(λ − 1) + 2λ − 2 = 0 ⇒ (λ − 1)2 (λ − 2) = 0 ⇒                   (2.38)

                                           ⇒ λ1 = λ2 = 1,      λ3 = 2.