Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 47 стр.

UptoLike

Рубрика: 

y
1
(x) = 1 +
X
k=2
a
k
x
k
,
y
2
(x) = x +
X
k=2
b
k
x
k
.
y
1
(x)
X
k=2
[a
k
(k
2
+ 1)x
k
+ a
k
k(k 1)x
k2
] 1 = 0.
a
k
x
0
1 + 2 · 1a
2
= 0, a
2
=
1
2!
;
x 3 · 2 · a
3
= 0, a
3
= 0;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x
k
(k + 2)(k + 1)a
k+2
(k
2
+ 1)a
k
= 0, k 2
a
5
= a
7
= . . . = a
2m+1
= . . . = 0,
a
2
=
1 + 2
2
4!
, a
6
=
(1 + 2
2
)(1 + 4
2
)
6!
, . . . ,
a
2m
=
(1 + 2
2
)(1 + 4
2
) ···(1 + (2m 2)
2
)
(2m)!
.
y
1
= 1 +
1
2!
x
2
+
1 + 2
2
4!
x
4
+ . . . +
(1 + 2
2
)(1 + 4
2
) ···(1 + (2m 2)
2
)
(2m)!
x
2m
+ . . . ,
|x| < 1
y
2
(x)
y
2
= x +
2
3!
x
3
+
2(1 + 3
2
)
5!
x
5
+ . . . +
2(1 + 3
2
) . . . (1 + (2m 1)
2
)
(2m + 1)!
x
2m+1
+ . . . ,
|x| < 1
y = C
1
y
1
+ C
2
y
2
.
y
00
+ xy
0
(2x
2
+ 1)y = 0
                                                      47


   Ïî ôîðìóëå (4.4)
                                                           ∞
                                                           X
                                           y1 (x) = 1 +          ak x k ,                    (4.11)
                                                           k=2
                                                           ∞
                                                           X
                                           y2 (x) = x +          bk xk .                     (4.12)
                                                           k=2

   Íàéäåì y1 (x). Ïîäñòàâëÿÿ ðÿä (4.11) â óðàâíåíèå (4.10), ïîëó÷àåì
                           ∞
                           X
                                  [−ak (k 2 + 1)xk + ak k(k − 1)xk−2 ] − 1 = 0.
                            k=2

Ïîýòîìó êîýôôèöèåíòû ak îïðåäåëÿþòñÿ èç ñèñòåìû
                                                                    1
                        ïðè x0 :     − 1 + 2 · 1a2 = 0, a2 =           ;
                                                                    2!
                        ïðè x:      3 · 2 · a3 = 0, a3 = 0;
                        ..............................
                        ïðè xk :     (k + 2)(k + 1)ak+2 − (k 2 + 1)ak = 0, k ≥ 2



è èìåþò âèä
                                     a5 = a7 = . . . = a2m+1 = . . . = 0,
                                      1 + 22         (1 + 22 )(1 + 42 )
                                 a2 =        , a6 =                     ,...,
                                         4!                     6!
                                      (1 + 22 )(1 + 42 ) · · · (1 + (2m − 2)2 )
                             a2m    =                                           .
                                                      (2m)!
Òàêèì îáðàçîì,
                    1 2 1 + 22 4        (1 + 22 )(1 + 42 ) · · · (1 + (2m − 2)2 ) 2m
         y1 = 1 +      x +    x + ... +                                          x + ...,
                    2!     4!                           (2m)!
ãäå |x| < 1.
   Àíàëîãè÷íî íàõîäèì y2 (x):
                     2 3 2(1 + 32 ) 5        2(1 + 32 ) . . . (1 + (2m − 1)2 ) 2m+1
          y2 = x +      x +        x + ... +                                  x     + ...,
                     3!      5!                         (2m + 1)!
ãäå |x| < 1.
   Îáùåå ðåøåíèå óðàâíåíèÿ (4.10) 

                                              y = C1 y1 + C2 y2 .

   Íàéòè ðåøåíèÿ óðàâíåíèé:

   65.   y 00 + xy 0 − (2x2 + 1)y = 0.