ВУЗ:
Составители:
Рубрика:
x
0
(a, b) y
0
y
0
0
y
(n−1)
0
Z
x
x
0
Z
x
x
0
···
Z
x
x
0
| {z }
n
f(x)dxdx ···dx =
1
(n − 1)!
Z
x
x
0
f(t)(x − t)
n−1
dt,
y =
1
(n − 1)!
Z
x
x
0
f(t)(x − t)
n−1
dt + C
1
x
n−1
+ C
2
x
n−2
+
+ . . . + C
n
x + C
n
,
y =
1
(n − 1)!
Z
x
x
0
f(t)(x − t)
n−1
dt +
y
(n−1)
0
(n − 1)!
(x − x
0
)
(n−1)
+
+
y
(n−2)
0
(n − 2)!
(x − x
0
)
(n−2)
+ . . . + y
0
0
(x − x
0
) + y
0
.
y
1
y = y
1
+ C
1
x
n−1
+ C
2
x
n−2
+ . . . + C
n
x + C
n
.
y
00
= xe
x
y(0) = 1 y
0
(0) = 0
y
0
= (x − 1)e
x
+ C
1
,
y = (x − 2)e
x
+ C
1
x + C
2
.
x
0
= 0 y
0
= 1 y
0
0
= 0
0 = −1 + C
1
,
1 = −2 + C
2
,
C
1
= 1 C
2
= 3
y = (x − 2)e
x
+ x + 3.
n = 2 x
0
= 0 y
0
= 1 y
0
0
= 0
y =
Z
x
0
te
t
(x − t)dt + 1.
6
(n−1)
ãäå x0 - ôèêñèðîâàííîå ÷èñëî èç èíòåðâàëà (a, b), à y0 , y00 ,. . . , y0 èãðàþò ðîëü ïðîèç-
âîëüíûõ ïîñòîÿííûõ, êîòîðûå çäåñü ìîãóò ïðèíèìàòü ëþáûå çíà÷åíèÿ. Ó÷èòûâàÿ, ÷òî
Z xZ x Z x Z x
1
··· f (x)dxdx · · · dx = f (t)(x − t)n−1 dt,
(n − 1)! x0
| x0 x{z
0 x0
n ðàç
}
îáùåå ðåøåíèå ìîæíî çàïèñàòü â ñëåäóþùèõ ôîðìàõ:
Z x
1
y= f (t)(x − t)n−1 dt + C1 xn−1 + C2 xn−2 +
(n − 1)! x0
+ . . . + Cn x + Cn , (1.5)
Z x (n−1)
1 y
y= f (t)(x − t) n−1
dt + 0 (x − x0 )(n−1) +
(n − 1)! x0 (n − 1)!
(n−2)
y
+ 0 (x − x0 )(n−2) + . . . + y00 (x − x0 ) + y0 . (1.6)
(n − 2)!
Åñëè èçâåñòíî êàêîå-íèáóäü ÷àñòíîå ðåøåíèå y1 óðàâíåíèÿ (1.1), òî îáùåå ðåøåíèå èìååò
âèä
y = y1 + C1 xn−1 + C2 xn−2 + . . . + Cn x + Cn .
Ïðèìåð 1. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ
y 00 = xex (1.7)
è ÷àñòíîå ðåøåíèå, óäîâëåòâîðÿþùåå íà÷àëüíûì óñëîâèÿì y(0) = 1, y 0 (0) = 0.
Ðåøåíèå. Èíòåãðèðóåì ïîñëåäîâàòåëüíî óðàâíåíèå (1.7), ïîëó÷àåì îáùåå ðåøåíèå:
y 0 = (x − 1)ex + C ,
1
(1.8)
y = (x − 2)ex + C x + C .
1 2
Íàéäåì ÷àñòíîå ðåøåíèå, óäîâëåòâîðÿþùåå ïîñòàâëåííûì íà÷àëüíûì óñëîâèÿì. Ïîäñòà-
âèì íà÷àëüíûå äàííûå x0 = 0, y0 = 1, y00 = 0 â ñèñòåìó (1.8):
0 = −1 + C ,
1
1 = −2 + C ,
2
ïîëó÷èì C1 = 1, C2 = 3, îòñþäà ÷àñòíîå ðåøåíèå
y = (x − 2)ex + x + 3. (1.9)
Ýòî æå ÷àñòíîå ðåøåíèå ìîæíî ïîëó÷èòü, èñïîëüçóÿ ôîðìóëó îáùåãî ðåøåíèÿ â ôîðìå
Êîøè (1.6). Ïîëîæèì â íåé n = 2, x0 = 0, y0 = 1, y00 = 0:
Z x
y= tet (x − t)dt + 1.
0
Âûïîëíèâ èíòåãðèðîâàíèå, âíîâü ïîëó÷èì ðåøåíèå (1.9).
Страницы
- « первая
- ‹ предыдущая
- …
- 4
- 5
- 6
- 7
- 8
- …
- следующая ›
- последняя »
