Обыкновенные дифференциальные уравнения высших порядков. Мухарлямов Р.К - 6 стр.

UptoLike

Рубрика: 

x
0
(a, b) y
0
y
0
0
y
(n1)
0
Z
x
x
0
Z
x
x
0
···
Z
x
x
0
| {z }
n
f(x)dxdx ···dx =
1
(n 1)!
Z
x
x
0
f(t)(x t)
n1
dt,
y =
1
(n 1)!
Z
x
x
0
f(t)(x t)
n1
dt + C
1
x
n1
+ C
2
x
n2
+
+ . . . + C
n
x + C
n
,
y =
1
(n 1)!
Z
x
x
0
f(t)(x t)
n1
dt +
y
(n1)
0
(n 1)!
(x x
0
)
(n1)
+
+
y
(n2)
0
(n 2)!
(x x
0
)
(n2)
+ . . . + y
0
0
(x x
0
) + y
0
.
y
1
y = y
1
+ C
1
x
n1
+ C
2
x
n2
+ . . . + C
n
x + C
n
.
y
00
= xe
x
y(0) = 1 y
0
(0) = 0
y
0
= (x 1)e
x
+ C
1
,
y = (x 2)e
x
+ C
1
x + C
2
.
x
0
= 0 y
0
= 1 y
0
0
= 0
0 = 1 + C
1
,
1 = 2 + C
2
,
C
1
= 1 C
2
= 3
y = (x 2)e
x
+ x + 3.
n = 2 x
0
= 0 y
0
= 1 y
0
0
= 0
y =
Z
x
0
te
t
(x t)dt + 1.
                                                        6


                                                                                 (n−1)
ãäå x0 - ôèêñèðîâàííîå ÷èñëî èç èíòåðâàëà (a, b), à y0 , y00 ,. . . , y0                 èãðàþò ðîëü ïðîèç-
âîëüíûõ ïîñòîÿííûõ, êîòîðûå çäåñü ìîãóò ïðèíèìàòü ëþáûå çíà÷åíèÿ. Ó÷èòûâàÿ, ÷òî
              Z xZ x      Z x                              Z x
                                                      1
                      ···     f (x)dxdx · · · dx =             f (t)(x − t)n−1 dt,
                                                   (n − 1)! x0
              | x0 x{z
                    0      x0
                  n ðàç
                            }

îáùåå ðåøåíèå ìîæíî çàïèñàòü â ñëåäóþùèõ ôîðìàõ:
                            Z x
                       1
                y=              f (t)(x − t)n−1 dt + C1 xn−1 + C2 xn−2 +
                    (n − 1)! x0
                     + . . . + Cn x + Cn ,                                                            (1.5)
                                 Z   x                               (n−1)
                        1                                        y
                  y=                     f (t)(x − t) n−1
                                                            dt + 0       (x − x0 )(n−1) +
                     (n − 1)!     x0                            (n − 1)!
                        (n−2)
                     y
                   + 0       (x − x0 )(n−2) + . . . + y00 (x − x0 ) + y0 .                            (1.6)
                    (n − 2)!
Åñëè èçâåñòíî êàêîå-íèáóäü ÷àñòíîå ðåøåíèå y1 óðàâíåíèÿ (1.1), òî îáùåå ðåøåíèå èìååò
âèä
                          y = y1 + C1 xn−1 + C2 xn−2 + . . . + Cn x + Cn .
Ïðèìåð   1. Íàéòè îáùåå ðåøåíèå óðàâíåíèÿ

                                                   y 00 = xex                                         (1.7)

è ÷àñòíîå ðåøåíèå, óäîâëåòâîðÿþùåå íà÷àëüíûì óñëîâèÿì y(0) = 1, y 0 (0) = 0.
   Ðåøåíèå.   Èíòåãðèðóåì ïîñëåäîâàòåëüíî óðàâíåíèå (1.7), ïîëó÷àåì îáùåå ðåøåíèå:
                             
                              y 0 = (x − 1)ex + C ,
                                                  1
                                                                                (1.8)
                              y = (x − 2)ex + C x + C .
                                                                 1           2

Íàéäåì ÷àñòíîå ðåøåíèå, óäîâëåòâîðÿþùåå ïîñòàâëåííûì íà÷àëüíûì óñëîâèÿì. Ïîäñòà-
âèì íà÷àëüíûå äàííûå x0 = 0, y0 = 1, y00 = 0 â ñèñòåìó (1.8):
                                  
                                   0 = −1 + C ,
                                                   1
                                   1 = −2 + C ,
                                                                 2

ïîëó÷èì C1 = 1, C2 = 3, îòñþäà ÷àñòíîå ðåøåíèå

                                          y = (x − 2)ex + x + 3.                                      (1.9)

Ýòî æå ÷àñòíîå ðåøåíèå ìîæíî ïîëó÷èòü, èñïîëüçóÿ ôîðìóëó îáùåãî ðåøåíèÿ â ôîðìå
Êîøè (1.6). Ïîëîæèì â íåé n = 2, x0 = 0, y0 = 1, y00 = 0:
                                   Z x
                              y=       tet (x − t)dt + 1.
                                               0
Âûïîëíèâ èíòåãðèðîâàíèå, âíîâü ïîëó÷èì ðåøåíèå (1.9).