ВУЗ:
Составители:
48
2. ВЫЧИСЛЕНИЕ ЭНЕРГИИ ОБРАЗОВАНИЯ ДЕФЕКТОВ И
РАСТВОРЕНИЯ ПРИМЕСНЫХ АТОМОВ МЕТОДОМ СТАТИКИ
РЕШЕТКИ
Сформулированная выше модель ионного кристалла пригодна как
для моделирования эволюции кристалла с дефектами во времени
(интегрирования уравнений движения ионов методом молекулярной
динамики), так и для определения наиболее энергетически выгодных
конфигураций дефектов с вычислением соответствующих энергий
образования (энергий растворения примесных атомов). В последнем
случае используются методы «статики решетки».
2.1. Расчет удельной энергии кристалла с периодическими
граничными условиями (ГУ)
Использование периодических граничных условий не позволяет
рассмотреть образование одного дефекта в бесконечном кристалле, потому
что дефект транслируется с периодом L. Может быть определена энергия
решетки, содержащей периодическую систему одинаковых дефектов, в
расчете на один дефект (на объем L
3
).Для вычисления удельной энергии
решетки необходимо:
- Найти энергии связи
C
i
E
и
S
i
E
отдельно ядра и оболочки каждого
из ионов (i) со всем остальным бесконечным периодическим кристаллом.
Кулоновская энергия заряда точно определяется методом Эвальда (6-12),
тогда как некулоновское взаимодействие оболочек на некотором большом
расстоянии в пределах области I принимается нулевым. Суммирование
проводится по бесконечным периодическим подрешеткам, к каждой из
которых принадлежит один из ионов модельного кристалла:
(
)
(
)
(
)
åå
¹
= =
-+=
N
ij
j
NN
k
S
ijk
SortRange
S
i
SClmb
i
S
i
S
i
RRURERE
,1 1
S,
rrrr
, (14)
(
)
(
)
C
i
CClmb
i
C
i
C
i
RERE
r
r
,
= , (15)
где, например,
S
jk
R
r
- координата оболочки k–ого иона,
принадлежащего j–ой подрешетке.
- Учесть делением пополам то, что при суммировании энергий
связи всех ядер и оболочек каждое из взаимодействий считается дважды;
- Включить в общую сумму энергии поляризации ионов.
Теперь, если i - индекс суммирования по всем N ионам области I, то
удельная энергия модельного кристалла
() () ( )
[
]
å
=
-×++×=
N
i
C
i
S
ii
C
i
C
i
S
i
S
i
Model
RRkREREE
1
2
2
1
rrrr
. (16)
Удельная энергия образования дефекта E
D
- разность удельных
энергий связи дефектного и идеального кристаллов:
Страницы
- « первая
- ‹ предыдущая
- …
- 46
- 47
- 48
- 49
- 50
- …
- следующая ›
- последняя »
