ВУЗ:
Составители:
Рубрика:
f : Ω → F a
∀ε > 0 ∃δ > 0 (B
δ
(a) ∩ Ω ⊂ f
−1
(B
ε
(f(a))).
f(x) = (f
1
(x), . . . , f
m
(x)) (x ∈ Ω)
a a
f
k
(x) (x ∈ Ω) 1 6 k 6 m
f, g :
Ω → F α : Ω → Λ (= C R) a
a
f(x) ± g(x) (x ∈ Ω)
α(x) · f(x)
1
α(x)
· f(x) α(a) 6= 0) (x ∈ Ω)
hf(x), g(x)i kf(x)k (x ∈ Ω)
E F G f : Ω → F (Ω ⊂ E)
a ∈ Ω f(Ω) ⊂ D g : D → G (D ⊂ F ) f(a)
g ◦ f : Ω → G a
i : R
n
→ R
n+k
i : C
n
→ C
n+k
i(x
1
, . . . , x
n
) = (x
1
, . . . , x
n
, 0, . . . , 0)
p
k
(x
1
, . . . , x
n
) = x
k
1 6 k 6 n
f : Ω → F (Ω ⊂ E)
kf(x) − f(y)k 6 Kkx − yk (x, y ∈ Ω) K > 0
f(x
1
, x
2
) =
x
1
x
2
x
1
− x
2
, (x
1
6= x
2
);
f(x
1
, x
2
) =
(x
1
)
2
x
2
(x
1
)
4
+ (x
2
)
2
, kxk 6= 0,
0, kxk = 0.
7.1.3. Ôóíêöèÿ f : Ω → F íåïðåðûâíà â òî÷êå a òòîãäà ∀ε > 0 ∃δ > 0 (Bδ (a) ∩ Ω ⊂ f −1 (Bε (f (a))). 7.1.4.  îáîçíà÷åíèÿõ 5.2 ôóíêöèÿ f (x) = (f 1 (x), . . . , f m (x)) (x ∈ Ω) íåïðåðûâíà â òî÷êå a òòîãäà â òî÷êå a íåïðåðûâíû âñå êîîðäèíàòíûå ôóíêöèè ìíîãèõ ïåðåìåí- íûõ f k (x) (x ∈ Ω), 1 6 k 6 m. 7.1.5. Óïðàæíåíèå. Ñôîðìóëèðóéòå îïðåäåëåíèå 7.1 íà ÿçûêå ïîñëåäîâàòåëüíî- ñòåé è äîêàæèòå åãî ýêâèâàëåíòíîñòü îïðåäåëåíèþ 7.1. 7.2. Îñòàíîâèìñÿ íà ëîêàëüíûõ ñâîéñòâàõ íåïðåðûâíûõ ôóíêöèé. Ïóñòü f, g : Ω → F , α : Ω → Λ (= C èëè R), è âñå ýòè ôóíêöèè íåïðåðûâíû â òî÷êå a. Òîãäà â òî÷êå a íåïðåðûâíû ôóíêöèè 7.2.1. f (x) ± g(x) (x ∈ Ω), 1 7.2.2. α(x) · f (x), · f (x) (åñëè α(a) 6= 0) (x ∈ Ω), α(x) 7.2.3. hf (x), g(x)i, kf (x)k (x ∈ Ω). 7.2.4. Åñëè E , F , G åâêëèäîâû ïðîñòðàíñòâà è f : Ω → F (Ω ⊂ E) íåïðåðûâíû â òî÷êå a ∈ Ω è f (Ω) ⊂ D, g : D → G (D ⊂ F ) íåïðåðûâíà â òî÷êå f (a), òî g ◦ f : Ω → G íåïðåðûâíà â òî÷êå a. 7.3. Äîêàæèòå íåïðåðûâíîñòü ñëåäóþùèõ îòîáðàæåíèé: 7.3.1. Âëîæåíèå i : Rn → Rn+k (èëè i : Cn → Cn+k ), çàäàííîå ôîðìóëîé i(x1 , . . . , xn ) = (x1 , . . . , xn , 0, . . . , 0). 7.3.2. Ïðîåêöèÿ pk (x1 , . . . , xn ) = xk , 1 6 k 6 n. 7.3.3. Îòîáðàæåíèå f : Ω → F (Ω ⊂ E), óäîâëåòâîðÿþùåå óñëîâèþ Ëèïøèöà kf (x) − f (y)k 6 Kkx − yk (x, y ∈ Ω), K > 0 ôèêñèðîâàííàÿ êîíñòàíòà. 7.4. Èññëåäîâàòü íà íåïðåðûâíîñòü ñëåäóþùèå ôóíêöèè äâóõ âåùåñòâåííûõ ïå- ðåìåííûõ: x1 x2 a) f (x1 , x2 ) = 1 − x2 , (x1 6= x2 ); x (x1 )2 x2 , åñëè kxk 6= 0, á) f (x1 , x2 ) = (x1 )4 + (x2 )2 0, åñëè kxk = 0. 11