ВУЗ:
Составители:
Рубрика:
x
0
Ω
y
0
∈ F f x
0
x
m
∈ Ω (x
m
6= x
0
)
x
m
→ x
0
⇒ f(x
m
) → y
0
(m → ∞).
y
0
= lim
x→x
0
f(x)
lim
x→x
0
f(x) = y
0
lim
x→x
0
f(x) = y
1
y
0
= y
1
f : Ω → F x
0
Ω y
0
= (y
1
0
, . . . , y
m
0
) f(x) =
(f
1
(x), . . . , f
m
(x)) (x ∈ Ω)
y
0
= lim
x→x
0
f(x)
∀s (1 6 s 6 m) (y
s
0
= lim
x→x
0
f
s
(x))
∀ε > 0 ∃δ > 0 ∀x ∈ Ω (0 < kx − x
0
k < δ ⇒ kf(x) − y
0
k < ε),
∀ε > 0 ∃δ > 0 (f(
∨
B
δ
(x
0
) ∩ Ω) ⊂ B
ε
(y
0
))
f, g : Ω → F α : Ω → Λ(= C R)
lim
x→x
0
f(x) = y
0
lim
x→x
0
g(x) = z
0
lim
x→x
0
α(x) = λ
0
lim
x→x
0
[f(x) ± g(x)] = y
0
± z
0
lim
x→x
0
[α(x)f(x)] = λ
0
y
0
lim
x→x
0
hf(x), g(x)i = hy
0
, z
0
i lim
x→x
0
kf(x)k = ky
0
k
y
0
6= θ ∃δ > 0 ∀x ∈
∨
B
δ
(x
0
) ∩ Ω (kf(x)k >
1
2
ky
0
k)
f : Ω → F x
0
Ω
lim
x→x
0
f(x)
∀ε > 0 ∃δ > 0 ∀u, v ∈
∨
B
δ
(x
0
) ∩ Ω (kf(u) − f(v)k < ε).
E
∞
∨
∞ E
{x ∈ E : kxk > N } N > 0
lim
x→x
0
f(x) = ∞ x
0
Ω
∀N > 0 ∃δ > 0 ∀x ∈ Ω (0 < kx − x
0
k < δ ⇒ kf(x)k > N)
lim
x→∞
f(x) = y Ω
∀ε > 0 ∃N > 0 ∀x ∈ Ω (kxk > N ⇒ kf(x) − yk < ε)
lim
x→∞
f(x) = ∞
5.3.  ïðåäïîëîæåíèÿõ 5.1 ïóñòü x0 ïðåäåëüíàÿ òî÷êà ìíîæåñòâà Ω. Âåêòîð
y0 ∈ F íàçûâàåòñÿ ïðåäåëîì îòîáðàæåíèÿ f â òî÷êå x0 , åñëè äëÿ ëþáîé ïîñëåäî-
âàòåëüíîñòè xm ∈ Ω (xm 6= x0 ):
xm → x0 ⇒ f (xm ) → y0 (m → ∞).
 ýòîì ñëó÷àå ïèøóò y0 = lim f (x).
x→x0
5.3.1. Åäèíñòâåííîñòü ïðåäåëà. Åñëè lim f (x) = y0 , lim f (x) = y1 òî y0 = y1 .
x→x0 x→x0
5.4. Ïóñòü f : Ω → F , x0 ïðåäåëüíàÿ òî÷êà Ω, y0 = (y01 , . . . , y0m ), f (x) =
(f 1 (x), . . . , f m (x))
(x ∈ Ω). Ñëåäóþùèå óñëîâèÿ ýêâèâàëåíòíû:
5.4.1. y0 = lim f (x),
x→x0
5.4.2. ∀s (1 6 s 6 m) (y0s = lim f s (x)),
x→x0
5.4.3. ∀ε > 0 ∃δ > 0 ∀x ∈ Ω (0 < kx − x0 k < δ ⇒ kf (x) − y0 k < ε),
∨
5.4.4. ∀ε > 0 ∃δ > 0 (f (B δ (x0 ) ∩ Ω) ⊂ Bε (y0 )).
5.5. (Ñâîéñòâà ïðåäåëà). Ïóñòü f, g : Ω → F , α : Ω → Λ(= C èëè R) è ñóùåñòâóþò
ñëåäóþùèå ïðåäåëû lim f (x) = y0 , lim g(x) = z0 , lim α(x) = λ0 . Òîãäà
x→x0 x→x0 x→x0
5.5.1. lim [f (x) ± g(x)] = y0 ± z0 ,
x→x0
5.5.2. lim [α(x)f (x)] = λ0 y0 ,
x→x0
5.5.3. lim hf (x), g(x)i = hy0 , z0 i, lim kf (x)k = ky0 k,
x→x0 x→x0
∨
5.5.4. Åñëè y0 6= θ, òî ∃δ > 0 ∀x ∈B δ (x0 ) ∩ Ω (kf (x)k > 21 ky0 k).
5.6. Êðèòåðèé Êîøè. Ïóñòü f : Ω → F , x0 ïðåäåëüíàÿ òî÷êà Ω. Ïðåäåë
lim f (x) ñóùåñòâóåò òòîãäà
x→x0
∨
∀ε > 0 ∃δ > 0 ∀u, v ∈B δ (x0 ) ∩ Ω (kf (u) − f (v)k < ε).
5.7. Èç òåõíè÷åñêèõ ñîîáðàæåíèé óäîáíî ê åâêëèäîâó ïðîñòðàíñòâó E äîáàâëÿòü
íåñîáñòâåííóþ òî÷êó ∞; ∨ -îêðåñòíîñòüþ òî÷êè ∞ â E íàçîâåì ìíîæåñòâî âèäà
{x ∈ E : kxk > N }, N > 0. Îòìåòèì ìîäèôèêàöèþ îïðåäåëåíèÿ 5.3. Â ïðåäïîëîæå-
íèÿõ 5.1:
5.7.1. lim f (x) = ∞ îçíà÷àåò ïî îïðåäåëåíèþ, ÷òî x0 ïðåäåëüíàÿ òî÷êà Ω è
x→x0
∀N > 0 ∃δ > 0 ∀x ∈ Ω (0 < kx − x0 k < δ ⇒ kf (x)k > N ).
5.7.2. lim f (x) = y îçíà÷àåò ïî îïðåäåëåíèþ, ÷òî Ω íåîãðàíè÷åíî è
x→∞
∀ε > 0 ∃N > 0 ∀x ∈ Ω (kxk > N ⇒ kf (x) − yk < ε).
5.7.3. Îïèøèòå, ÷òî îçíà÷àåò óñëîâèå lim f (x) = ∞.
x→∞
5.8. Íàéòè ïðåäåëû ôóíêöèé:
9
