Методологическая физика. Очиров Д.Д-Э. - 66 стр.

UptoLike

Составители: 

Рубрика: 

131
гравитационном поле, которое действует в направлениях ξ, уравнение (1)
будет иметь вид:
σ =τ(1+Ф/с
2
), (2)
где Фразница потенциальных энергий тяготения между точкой (ξ,0,0)
и началом координат и σвремя в системе отсчета Σ. “Существуютча-
сы”, находящиеся в местах с различными гравитационными потенциала-
ми, — пишет Эйнштейн в обзоре по СТО, — скоростьхода которых
можно проконтролировать с большой точностью; этоисточники света с
линейчатым спектром. Из сказанного выше следует, что свет, приходящий
от такого источника, расположенного на поверхности Солнца, — продол-
жает он, — обладает длиной волныбольшей, чем свет, испускаемый те-
ми же атомами на Земле
1
. При этом Эйнштейн предполагал, что уравне-
ние (2) выполняется также в неоднородном гравитационном поле. Таким
образом, Эйнштейн предложил метод расчета гравитационного красного
смещения без использования эффекта Доплера еще в 1907 г.
Далее Эйнштейн, рассматривая уравнения Максвелла в системах S и
Σ умозрительной модели для красного смещения, где местная инерциаль-
ная система отсчета S
1
выполняла рольпосредникамежду S и Σ, обнару-
жил, что уравнения Максвелла имеют инвариантный вид в обеих системах
(S и Σ), а скорость света в S задается уравнением:
с(1+γξ/с
2
)= с(1+Ф/с
2
) (3)
Отсюда следует, что световые лучи, — пишет Эйнштейн, — распро-
страняющиеся не по оси (ξ), искривляются гравитационным полем
2
. Так-
же, рассмотрев закон сохранения энергии в системе Σ, Эйнштейн с помо-
щью выражения:
(Е/с
2
) уξ=(Е/с
2
) Ф (4)
обнаружил, что закон Е=mc
2
“…выполняется не только для инертной, но
и для тяготеющей массы…”
3
.
Возвращаясь к нашему подзаголовку, можно резюмировать, что исто-
ки ОТО мы видим в противоречиях между КТТ Ньютона и СТО Эйнштей-
на, замеченные им в обзоре 1907 г., приведшие к уточнению границ при-
менимости СТО. Это во-первых. Во-вторых, с помощью умозрительной
модели релятивистской системы отсчета, построенной в СТО, и путем ее
дальнейшего усложнения (введения местных лоренцовых систем отсчета и
1
Эйнштейн А. СНТ. Т. 1. С. 113.
2
Там же.
3
Там же. С. 114.
132
постоянства скорости света для бесконечно малых световых путей, т.е. на
основании принципа эквивалентности) Эйнштейн еще в 1907 г. пришел к
предсказанию основных эффектов ОТО: гравитационного красного сме-
щения и искривления лучей света в гравитационном поле. Приведенными
выше результатами завершается начальный (бернский) этап (1907 г.) ста-
новления ОТО.
Пражский этап становления ОТО
1
. Данный этап начинается со ста-
тьи ЭйнштейнаО влиянии силы тяжести на распространение света” (1911
г.). Проблемы, поставленные в этой статье Эйнштейном, “изоморфны
разделу V статьи (обзора) 1907 г.: (1) принцип эквивалентности, (2) “тя-
жесть энергии, красное смещение и (3) искривление лучей света. Более
того, используется в ней та же умозрительная модель, состоящая из сис-
тем отсчета S, Σ и S
1
.
По отношению к пункту (1), рассматривая покоящуюся систему S в
однородном гравитационном поле и движущуюся систему отсчета Σ по-
стоянным ускорением относительно системы S в отсутствии гравитацион-
ного поля, т.е. эквивалентные системы S и Σ, Эйнштейн приходит к выво-
ду: “…нельзя говорить об абсолютном ускорении координатной системы,
так же как нельзя говорить об абсолютной скорости системы”. Стало
быть, в статье 1911 г. намечается создание не только новой теории тяготе-
ния, но и относительности (нет абсолютного ускорения).
По отношению к пункту (2) Эйнштейн показал, что из эквивалентно-
сти систем S и Σтяжесть энергии вытекает как необходимое следствие”.
Здесь не будем приводить те математические выкладки, которые делал
Эйнштейн, чтобы не перегружать текст формулами, но в то же время заме-
тим, что по отношению к красному смещению он получил количественное
значение красного смещения, которое может наблюдаться на Земле (по-
рядка
ν/ν≈10
-6
).
По отношению к пункту (3) Эйнштейн также получил численное зна-
чение отклонения луча света в сторону источника поля (в радианах), рав-
ное 0,83
2
. Через четыре года он добавил к этому результату множитель 2.
При этом он использовал новую умозрительную модель — “фабрику ча-
совдля синхронизации их и понятияместных и глобальныхнаблюде-
ний, что привело его к представлению, что в точках с разными напряжен-
1
Пражский этап становления ОТО отделяет от ее начального (бернского) этапатри с половиной
года молчания” (А. Пайс). В это время Эйнштейн интенсивно занимался квантовой теорией.
2
В связи с этим небесполезно напомнить читателю, что в 1801 г. немецкий геодезист и астроном И.Г.
фон Зольднер опираясь на КТТ Ньютона получил численное значение λ=0,84. Об этом в 1911 г.
Эйнштейн, конечно, не знал. При этом фон Зольднер представил луч света как массивное тело и в
основу своих расчетов положил ньютонову теорию истечения, согласно которой свет состоит из
частиц. Значит Ньютон знал гипотезу искривления лучей света (См.: Исаак Ньютон. “Оптика”,
вопрос 2). Воистинуничто не ново под луной”.
гравитационном поле, которое действует в направлениях ξ, уравнение (1)    постоянства скорости света для бесконечно малых световых путей, т.е. на
будет иметь вид:                                                          основании принципа эквивалентности) Эйнштейн еще в 1907 г. пришел к
                         σ =τ(1+Ф/с2),                          (2)       предсказанию основных эффектов ОТО: гравитационного красного сме-
                                                                          щения и искривления лучей света в гравитационном поле. Приведенными
где Ф — разница потенциальных энергий тяготения между точкой (ξ,0,0)      выше результатами завершается начальный (бернский) этап (1907 г.) ста-
и началом координат и σ — время в системе отсчета Σ. “Существуют “ча-     новления ОТО.
сы”, находящиеся в местах с различными гравитационными потенциала-             Пражский этап становления ОТО1. Данный этап начинается со ста-
ми, — пишет Эйнштейн в обзоре по СТО, — скорость “хода” которых           тьи Эйнштейна “О влиянии силы тяжести на распространение света” (1911
можно проконтролировать с большой точностью; это — источники света с      г.). Проблемы, поставленные в этой статье Эйнштейном, “изоморфны”
линейчатым спектром. Из сказанного выше следует, что свет, приходящий     разделу V статьи (обзора) 1907 г.: (1) принцип эквивалентности, (2) “тя-
от такого источника, расположенного на поверхности Солнца, — продол-      жесть” энергии, красное смещение и (3) искривление лучей света. Более
жает он, — обладает длиной волны… большей, чем свет, испускаемый те-      того, используется в ней та же умозрительная модель, состоящая из сис-
ми же атомами на Земле”1. При этом Эйнштейн предполагал, что уравне-      тем отсчета S, Σ и S1.
ние (2) выполняется также в неоднородном гравитационном поле. Таким            По отношению к пункту (1), рассматривая покоящуюся систему S в
образом, Эйнштейн предложил метод расчета гравитационного красного        однородном гравитационном поле и движущуюся систему отсчета Σ по-
смещения без использования эффекта Доплера еще в 1907 г.                  стоянным ускорением относительно системы S в отсутствии гравитацион-
     Далее Эйнштейн, рассматривая уравнения Максвелла в системах S и      ного поля, т.е. эквивалентные системы S и Σ, Эйнштейн приходит к выво-
Σ умозрительной модели для красного смещения, где местная инерциаль-      ду: “…нельзя говорить об абсолютном ускорении координатной системы,
ная система отсчета S1 выполняла роль “посредника” между S и Σ, обнару-   так же как нельзя говорить об абсолютной скорости системы”. Стало
жил, что уравнения Максвелла имеют инвариантный вид в обеих системах      быть, в статье 1911 г. намечается создание не только новой теории тяготе-
(S и Σ), а скорость света в S задается уравнением:                        ния, но и относительности (нет абсолютного ускорения).
                             с(1+γξ/с2)= с(1+Ф/с2)                 (3)         По отношению к пункту (2) Эйнштейн показал, что из эквивалентно-
                                                                          сти систем S и Σ “тяжесть энергии вытекает как необходимое следствие”.
     “Отсюда следует, что световые лучи, — пишет Эйнштейн, — распро-      Здесь не будем приводить те математические выкладки, которые делал
страняющиеся не по оси (ξ), искривляются гравитационным полем”2. Так-     Эйнштейн, чтобы не перегружать текст формулами, но в то же время заме-
же, рассмотрев закон сохранения энергии в системе Σ, Эйнштейн с помо-     тим, что по отношению к красному смещению он получил количественное
щью выражения:                                                            значение красного смещения, которое может наблюдаться на Земле (по-
                           (Е/с2) уξ=(Е/с2) Ф                    (4)      рядка ∆ ν/ν≈10-6).
                                                                               По отношению к пункту (3) Эйнштейн также получил численное зна-
обнаружил, что закон Е=mc2 “…выполняется не только для инертной, но       чение отклонения луча света в сторону источника поля (в радианах), рав-
и для тяготеющей массы…”3.                                                ное 0,832. Через четыре года он добавил к этому результату множитель 2.
     Возвращаясь к нашему подзаголовку, можно резюмировать, что исто-     При этом он использовал новую умозрительную модель — “фабрику ча-
ки ОТО мы видим в противоречиях между КТТ Ньютона и СТО Эйнштей-          сов” для синхронизации их и понятия “местных и глобальных” наблюде-
на, замеченные им в обзоре 1907 г., приведшие к уточнению границ при-     ний, что привело его к представлению, что в точках с разными напряжен-
менимости СТО. Это во-первых. Во-вторых, с помощью умозрительной          1
                                                                            Пражский этап становления ОТО отделяет от ее начального (бернского) этапа “три с половиной
модели релятивистской системы отсчета, построенной в СТО, и путем ее      года молчания” (А. Пайс). В это время Эйнштейн интенсивно занимался квантовой теорией.
дальнейшего усложнения (введения местных лоренцовых систем отсчета и      2
                                                                            В связи с этим небесполезно напомнить читателю, что в 1801 г. немецкий геодезист и астроном И.Г.
                                                                          фон Зольднер опираясь на КТТ Ньютона получил численное значение λ=0,84. Об этом в 1911 г.
                                                                          Эйнштейн, конечно, не знал. При этом фон Зольднер представил луч света как массивное тело и в
1
  Эйнштейн А. СНТ. Т. 1. С. 113.                                          основу своих расчетов положил ньютонову теорию истечения, согласно которой свет состоит из
2
  Там же.                                                                 частиц. Значит Ньютон знал гипотезу искривления лучей света (См.: Исаак Ньютон. “Оптика”,
3
  Там же. С. 114.                                                         вопрос 2). Воистину “ничто не ново под луной”.

                                   131                                                                                  132