Основы страхования. Орлов В.П. - 21 стр.

UptoLike

Составители: 

Рубрика: 

¨a
(m)
n|
m
[0, mn] [0, 1/m] ¨a
(m)
n|
=
1
m
+
1
m
v
1
m
+
1
m
v
2
m
+ ... +
1
m
v
nm1
m
=
1
m
(1 + v
1
m
+ ... + v
nm1
m
) v
1
= v
1
m
¨a
(m)
n|
=
1
m
¡
1 + v
1
+ ... + v
nm1
1
¢
=
1v
nm
1
m(1v
1
)
[0, nm] v
1
v
1
i
(m)
=
1v
1
v
1
=
1v
1
m
v
1
m
=
1
1
(1+i)
1
m
1
(1+i)
1
m
=
(1 + i)
1
m
1 ¨a
n|
i ¨a
n|@i
1 + v
1
+ ... + v
mn1
1
= ¨a
nm|@i
(m)
¨a
(m)
n|
¨a
(m)
n|
=
1
m
¨a
nm|@i
(m)
i
(m)
¨a
(m)
n|
=
1
m
¨a
nm|@i
(m)
/m
a
(m)
n|
=
1
m
a
nm|@i
(m)
a
(m)
n|
=
1
m
a
nm|@i
(m)
/m
k = 1, 2, ...
P
k
= {0, 1, 2, ...}
P
k
P k 0
P
k=0
P
k
= 1
k
b
k
τ(k)
v
(τ(t), b
t
, , v, p )
                                           21 

                              (m)
 Ïîäñ÷èòàåì âåëè÷èíó än| . Äëÿ ýòîãî ðàññìîòðèì óïðåæäàþùóþ ðåíòó,
âûïëà÷èâàåìóþ ñ ÷àñòîòîé m, êàê îáû÷íóþ ñåðèþ ïëàòåæåé íà ïðîìå-
                                                                  (m)
æóòêå [0, mn] ñ ïðîìåæóòêîì êîíâåðñèè [0, 1/m]. Ïî îïðåäåëåíèþ, än| =
1           1     2                nm−1            1               nm−1                              1
  + m1 v m + m1 v m + ... + m1 v m = m1 (1 + v m + ... + v m ). Ïóñòü v1 = v m .
m
        (m)       ¡                      ¢  1−v1nm
Òîãäà än| = m  1
                    1 + v1 + ... + v1nm−1 = m(1−v 1)
                                                     .
 Âûðàæåíèå â ïåðâûõ ñêîáêàõ  ýòî îáû÷íàÿ óïðåæäàþùàÿ ðåíòà íà
ïðîìåæóòêå [0, nm] ñ êîýôôèöèåíòîì äèñêîíòèðîâàíèÿ v1 . Ñîîòâåòñòâó-
                                                                                              1
                                                                              1        1−        1
                                                    (m)         1−v1       1−v m
þùàÿ v1 ýôôåêòèâíàÿ ïðîöåíòíàÿ ñòàâêà              i∗     =      v1    =     1     =      (1+i) m
                                                                                            1        =
                                                                            vm                 1
                                                                                        (1+i) m
        1
(1 + i) m − 1. Äëÿ òîãî ÷òîáû â ïðèâåäåííîé ñòîèìîñòè ðåíòû än| óêàçàòü,
÷òî îíà ïðèâåäåíà ïî ïðîöåíòíîé ñòàâêå i, ïèøóò än|@i . Ñ ó÷åòîì ýòîãî îáî-
                                                          (m)
çíà÷åíèÿ 1 + v1 + ... + v1mn−1 = änm|@i(m) . Äëÿ än| ñ ó÷åòîì äâóõ ïîñëåäíèõ
                                            ∗
                             (m)
ôîðìóë ïîëó÷àåì, ÷òî       = m1 änm|@i(m)
                           än|        ∗
                                           . Åñëè èñïîëüçîâàòü íîìèíàëüíóþ
                                      (m)      1
ïðîöåíòíóþ ñòàâêó i(m) (4.2.18), òî än| = m     änm|@i(m) /m .
                                   (m)      1               (m)  1
 Àíàëîãè÷íî ïîêàçûâàåòñÿ, ÷òî an| = m         anm|@i(m) , an| = m  anm|@i(m) /m .
                                                     ∗




5 Äîëãîñðî÷íîå ñòðàõîâàíèå
5.1 Îñíîâíûå îïðåäåëåíèå.
Äîëãîñðî÷íîå ñòðàõîâàíèå ÿâëÿåòñÿ ÷àñòíûì ñëó÷àåì îáùåãî òèïà ñòðàõî-
âàíèÿ, ïðèâåäåííîãî â îïðåäåëåíèè 3.1. Ñïåöèôèêà äîëãîñðî÷íîãî ñòðàõî-
âàíèÿ ïðîÿâëÿåòñÿ â ñëåäóþùåì:
  1) âåðîÿòíîñòíîå ïðîñòðàíñòâî (ñëó÷àé) Ω ñòðîèòñÿ êàê ìíîæåñòâî ìî-
ìåíòîâ âðåìåíè k = 1, 2, ... íàñòóïëåíèÿ ñòðàõîâîãî ñëó÷àÿ ñ çàäàííîé
âåðîÿòíîñòüþ Pk . Òàêèì îáðàçîì, ìîæíî ñ÷èòàòü, ÷òî Ω = {0, 1, 2, ...} ñ
                           P∞
âåðîÿòíîñòÿìè Pk , P k ≥ 0, k=0 Pk = 1.
  2) åñëè ñòðàõîâîé ñëó÷àé ïðîèñõîäèò â ìîìåíò k , òî ñòðàõîâàÿ âûïëàòà
ðàçìåðîì bk âûïëà÷èâàåòñÿ â ìîìåíò âðåìåíè τ (k).
  Ïîñêîëüêó âûïëàòû ïðîèçâîäÿòñÿ â ðàçíûå ìîìåíòû âðåìåíè, äëÿ ïîä-
ñ÷¼òà ïðåìèè èõ äèñêîíòèðóþò ñ êîýôôèöèåíòîì v ê íóëåâîìó ìîìåíòó
âðåìåíè.

    Îïðåäåëåíèå 5.1. Äîãîâîðîì äîëãîñðî÷íîãî ñòðàõîâàíèÿ íàçûâàåòñÿ
âåêòîð âèäà (τ (t), bt , Ω, v, p), ãäå: