Механика. Першенков П.П - 16 стр.

UptoLike

Рубрика: 

16
Тангенциальное ускорение характеризует быстроту изменения
скорости по модулю или значению, направлено по касательной к траекто-
рии (рис. 1.6) и определяется выражением
dV
a
dt
τ
= . (2.8)
Нормальное ускорение характеризует быстроту изменения скоро-
сти по направлению, направлено к центру кривизны траектории (рис. 2.6)
и определяется выражением
2
n
V
a
R
=
, (2.9)
где Rрадиус кривизны траектории в данной точке; V
значение скоро-
сти тела в этой точке.
1.
При прямолинейном движении 0
n
a
=
, следовательно, aa
τ
= .
2.
При равномерном движении тела по окружности 0a
τ
=
r
, следова-
тельно,
n
aa= .
2.5 Уравнение пути прямолинейного движения
Если точка движется прямолинейно с постоянным ускорением вдоль
одной оси координат, то зависимость скорости и пути от времени описы-
вается следующими уравнениями (таблица 1).
Таблица 1
Равномерное
движение
Ускоренное
движение
Равнозамедленное
движение
а = 0 а = сonst a = сonst
0
constV
x
xVt
=
=+
0
2
0
2
VV at
at
xVt
=+
=+
0
2
0
2
VV at
at
xVt
=−
=−
22
0
2ax V V=−
22
0
2ax V V
=
В таблице 1
0
V
начальная скорость движения в момент t = 0,
x
0
начальная координата тела. Часто вместо x и x
0
записывают S и S
0
.
2.6 Кинематика вращательного движения
В случае движения тела по окружности по аналогии с линейной ско-
ростью и ускорением вводятся угловая скорость и угловое ускорение.
      Тангенциальное ускорение характеризует быстроту изменения
скорости по модулю или значению, направлено по касательной к траекто-
рии (рис. 1.6) и определяется выражением
                                      dV
                               aτ =      .                          (2.8)
                                      dt
      Нормальное ускорение характеризует быстроту изменения скоро-
сти по направлению, направлено к центру кривизны траектории (рис. 2.6)
и определяется выражением
                                    V2
                               an =    ,                            (2.9)
                                    R
где R – радиус кривизны траектории в данной точке; V − значение скоро-
сти тела в этой точке.
      1. При прямолинейном движении an = 0 , следовательно, a = aτ .
                                                        r
      2. При равномерном движении тела по окружности aτ = 0 , следова-
тельно, a = an .

     2.5 Уравнение пути прямолинейного движения
      Если точка движется прямолинейно с постоянным ускорением вдоль
одной оси координат, то зависимость скорости и пути от времени описы-
вается следующими уравнениями (таблица 1).

                                                             Таблица 1
     Равномерное            Ускоренное           Равнозамедленное
      движение                движение               движение
         а=0                   а = сonst              a = сonst
                            ⎧V = V0 + at           ⎧V = V0 − at
     ⎧V = const             ⎪                      ⎪
     ⎨                      ⎨             at 2     ⎨             at 2
     ⎩ x = x0 + V ⋅ t       ⎪ x = V0 t  +          ⎪ x = V0 t  −
                            ⎩              2       ⎩              2
                            2ax = V − V02
                                       2
                                                   2ax = V0 − V 2
                                                              2




       В таблице 1 V0 − начальная скорость движения в момент t = 0,
x0 – начальная координата тела. Часто вместо x и x0 записывают S и S0.

     2.6 Кинематика вращательного движения
     В случае движения тела по окружности по аналогии с линейной ско-
ростью и ускорением вводятся угловая скорость и угловое ускорение.

                                   16