ВУЗ:
Составители:
Рубрика:
где k
cs
– стоимость источника средств «обыкновенные акции новой эмиссии»;
r
fc
– уровень затрат на размещение акций (стоимость размещения акций), в
долях единицы.
В более общем случае, когда постоянный темп роста дивидендов
предполагается через k лет, стоимость источника «обыкновенные акции»
можно определить, разрешая уравнение (3.10) относительно r:
∑
+
⋅−
+
=
+
+=
k
j
k
j
j
r
gr
D
r
DP
k
1
10
)
)1(
1()(
)1(
(3.10)
где принято следующее: продолжительность фазы непостоянного роста
составляет k лет, дивиденды в этот период по годам равны C
j
, j=1,2,…,k;
первый ожидаемый дивиденд фазы постоянного роста с темпом g равен C
k+1
(при базисном, равном C
k
); r – приемлемая норма прибыли.
Такой алгоритм расчета, основанный на модели Гордона, имеет ряд
недостатков: 1) может быть реализован лишь для организаций,
выплачивающих дивиденды; 2) показатель ожидаемой доходности, которая и
является стоимостью капитала (СС
ао
) с позиции организации, очень
чувствителен к изменению коэффициента g; 3) не учитывается фактор риска.
Кроме того, правильно определить темпы прироста дивидендов в перспективе
достаточно сложно. Недостатки модели Гордона в известной степени
снимаются, если применяется модель CAPM.
Модель оценки финансовых активов (САРМ). Модель САРМ
основывается на нескольких нереалистичных предложениях и потому не может
быть проверена эмпирически. Тем не менее, она часто используется для
определения стоимости собственного капитала. Эта модель отражает
систематические риски бизнеса при его оценке и премии за риск: модель
САРМ предполагает, что стоимость собственного капитала равна безрисковой
доходности плюс премия за риск:
СС
ао
= r
f
+β
i
·(r
m
-r
f
), (3.11)
где СС
ао
– ожидаемая доходность акций данной организации; r
f
– доходность
безрисковых ценных бумаг (номинальная безрисковая доходность (ставка),
где kcs – стоимость источника средств «обыкновенные акции новой эмиссии»;
rfc – уровень затрат на размещение акций (стоимость размещения акций), в
долях единицы.
В более общем случае, когда постоянный темп роста дивидендов
предполагается через k лет, стоимость источника «обыкновенные акции»
можно определить, разрешая уравнение (3.10) относительно r:
k
P0 = ∑ D j (1+ r ) + D (r − g )⋅(1 (1+ r ) k )
j
k +1
(3.10)
j =1
где принято следующее: продолжительность фазы непостоянного роста
составляет k лет, дивиденды в этот период по годам равны Cj, j=1,2,…,k;
первый ожидаемый дивиденд фазы постоянного роста с темпом g равен Ck+1
(при базисном, равном Ck); r – приемлемая норма прибыли.
Такой алгоритм расчета, основанный на модели Гордона, имеет ряд
недостатков: 1) может быть реализован лишь для организаций,
выплачивающих дивиденды; 2) показатель ожидаемой доходности, которая и
является стоимостью капитала (ССао) с позиции организации, очень
чувствителен к изменению коэффициента g; 3) не учитывается фактор риска.
Кроме того, правильно определить темпы прироста дивидендов в перспективе
достаточно сложно. Недостатки модели Гордона в известной степени
снимаются, если применяется модель CAPM.
Модель оценки финансовых активов (САРМ). Модель САРМ
основывается на нескольких нереалистичных предложениях и потому не может
быть проверена эмпирически. Тем не менее, она часто используется для
определения стоимости собственного капитала. Эта модель отражает
систематические риски бизнеса при его оценке и премии за риск: модель
САРМ предполагает, что стоимость собственного капитала равна безрисковой
доходности плюс премия за риск:
ССао= rf+βi·(rm-rf), (3.11)
где ССао – ожидаемая доходность акций данной организации; rf – доходность
безрисковых ценных бумаг (номинальная безрисковая доходность (ставка),
Страницы
- « первая
- ‹ предыдущая
- …
- 27
- 28
- 29
- 30
- 31
- …
- следующая ›
- последняя »
