Практикум по алгебре. Часть 1. Многочлены и их корни. Попов В.В - 20 стр.

UptoLike

Рубрика: 

Z
3
Z
4
f
0
(x) = lim
x0
y
x
f(x) = a
0
x
n
+ a
1
x
n1
+ . . . + a
n1
x + a
n
n · a
0
x
n1
+
(n 1) · a
1
x
n2
+ . . . + a
n1
λ f(x)
a) f(x) = x
3
3x + λ;
b) f(x) = x
4
4x + λ;
c) f(x) = x
3
8x
2
+ (13 λ)x (6 + 2λ).
a 1
x
5
ax
2
ax+1
A B Ax
4
+ Bx
3
+ 1
(x 1)
2
.
x = x
0
f(x)
a) f = x
5
+ 8x
4
+ 21x
3
+ 14x
2
20x 24, x
0
= 2;
b) f = 8x
5
+ 44x
4
+ 18x
3
103x
2
+ 65x 12, x
0
=
1
2
;
c) f = x
5
10x
4
+ 34x
3
36x
2
27x + 54, x
0
= 3;
d) f = x
6
4x
5
5x
4
+ 40x
3
40x
2
32x + 48, x
0
= 2;
e) f = x
6
12x
5
+ 53x
4
96x
3
+ 27x
2
+ 108x 81, x
0
= 3;
f) f = 16x
6
+ 64x
5
+ 40x
4
120x
3
135x
2
+ 54x + 81, x
0
=
2
3
;
g) f = x
6
+ 9x
5
+ 30x
4
+ 40x
3
48x 32, x
0
= 2;
h) f = x
6
+ 6x
5
+ 9x
4
8x
3
24x
2
+ 16, x
0
= 2;
i) f = 16x
6
64x
5
+ 40x
4
+ 40x
3
55x
2
+ 22x 3, x
0
=
1
2
;
   Çàìå÷àíèå.  òåõ êîëüöàõ è ïîëÿõ, â êîòîðûõ íåò ïîíÿòèÿ
ïðåäåëüíîãî ïåðåõîäà (íàïðèìåð, Z3 , Z4 ) ïðîèçâîäíóþ ìíîãî-
                                                          ∆y
÷ëåíà íåëüçÿ îïðåäåëÿòü ôîðìóëîé f 0 (x) = lim∆x→0 ∆x        .  ýòîì
ñëó÷àå ðàññìàòðèâàþò ôîðìàëüíóþ ïðîèçâîäíóþ ìíîãî÷ëåíà:
äëÿ ìíîãî÷ëåíà f (x) = a0 xn + a1 xn−1 + . . . + an−1 x + an ýòà ïðî-
èçâîäíàÿ ÿâëÿåòñÿ (ïî îïðåäåëåíèþ) ìíîãî÷ëåíîì n · a0 xn−1 +
(n − 1) · a1 xn−2 + . . . + an−1 . Ïðè òàêîì ïîíèìàíèè ïðîèçâîäíîé
ïðåäëîæåíèÿ 1012 îñòàþòñÿ âåðíûìè â ïðîèçâîëüíûõ (â òîì
÷èñëå êîíå÷íûõ) ïîëÿõ.

   Çàäà÷è.

   6.1. Ïðè êàêîì çíà÷åíèè λ ìíîãî÷ëåí f (x) èìååò êðàòíûå
êîðíè?

           a) f (x) = x3 − 3x + λ;
           b) f (x) = x4 − 4x + λ;
           c) f (x) = x3 − 8x2 + (13 − λ)x − (6 + 2λ).
   6.2. Íàéòè çíà÷åíèå ïàðàìåòðà a, ïðè êîòîðîì ÷èñëî −1
áûëî áû êîðíåì ìíîãî÷ëåíà x5 − ax2 − ax + 1 êðàòíîñòè íå íèæå
âòîðîé.
   6.3. Îïðåäåëèòü A è B òàê, ÷òîáû òðåõ÷ëåí Ax4 + Bx3 + 1
äåëèëñÿ íà (x − 1)2 .
   6.4. Íàéòè êðàòíîñòü êîðíÿ x = x0 ìíîãî÷ëåíà f (x) :
 a) f = x5 + 8x4 + 21x3 + 14x2 − 20x − 24,                  x0   = −2;
 b) f = 8x5 + 44x4 + 18x3 − 103x2 + 65x − 12,               x0   = 12 ;
 c) f = x5 − 10x4 + 34x3 − 36x2 − 27x + 54,                 x0   = 3;
 d) f = x6 − 4x5 − 5x4 + 40x3 − 40x2 − 32x + 48,            x0   = 2;
 e) f = x6 − 12x5 + 53x4 − 96x3 + 27x2 + 108x − 81,         x0   = 3;
 f ) f = 16x6 + 64x5 + 40x4 − 120x3 − 135x2 + 54x + 81,     x0   = − 32 ;
 g) f = x6 + 9x5 + 30x4 + 40x3 − 48x − 32,                  x0   = −2;
 h) f = x6 + 6x5 + 9x4 − 8x3 − 24x2 + 16,                   x0   = −2;
 i) f = 16x6 − 64x5 + 40x4 + 40x3 − 55x2 + 22x − 3,         x0   = 12 ;

                                 20