Составители:
Рубрика:
29
3. а) Опытные данные определены таблицей
x
i
0 1 3 4
y
i
4 0 1 2
Установить вид эмпирической формулы y=f(x), используя
аппроксимирующую зависимость с тремя параметрами a, b и с,
имеющую вид
cbxaxcbaxQy ++==
2
),,,( .
Решение.
Здесь соотношение имеет вид:
∑
=
−++=
n
i
iii
ycbxaxcbaS
1
22
)(),,( . Для
нахождения a, b и c составим систему уравнений:
0,0,0 =
∂
∂
=
∂
∂
=
∂
∂
c
S
b
S
a
S
.
Отсюда получаем систему трех линейных уравнений с тремя
неизвестными:
⇔
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎨
⎧
=⋅++
=++
=++
⇔
⎪
⎪
⎪
⎩
⎪
⎪
⎪
⎨
⎧
=−++
=−++
=−++
∑∑∑
∑∑∑∑
∑∑∑∑
∑
∑
∑
===
====
====
=
=
=
4
1
4
1
4
1
2
4
1
4
1
4
1
2
4
1
3
4
1
2
4
1
2
4
1
3
4
1
4
1
2
1
2
1
22
0)(
0)(
0)(
i
i
i
i
i
i
i
ii
i
i
i
i
i
i
i
ii
i
i
i
i
i
i
n
i
iii
n
i
iiii
n
i
iiii
yncxbxa
xyxcxbxa
xyxcxbxa
ycbxax
xycbxax
xxcbxax
⎪
⎩
⎪
⎨
⎧
=++
=++
=++
74826
1182692
412692338
cba
cba
cba
Решаем систему, имеем: a=5/6; b=-109/30; c=18/5.
Эмпирическая формула представляет собой функцию:
5
18
30
109
6
5
2
+−= xxy совпадающую с алгебраическим многочленом
наилучшего среднеквадратичного приближения.
Сравним экспериментальные данные с результатами вычислений по
эмпирической формуле:
x
i
0 1 3 4
y
i
4 0 1 2
Y 18/5 4/5 1/5 12/5
Покажем это на графике:
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
1234
yi
y
3. а) Опытные данные определены таблицей
xi 0 1 3 4
yi 4 0 1 2
Установить вид эмпирической формулы y=f(x), используя
аппроксимирующую зависимость с тремя параметрами a, b и с,
имеющую вид y = Q( x, a, b, c) = ax 2 + bx + c .
Решение.
n
Здесь соотношение имеет вид: S (a, b, c) = ∑ (axi2 + bxi + c − yi ) 2 . Для
i =1
∂S ∂S ∂S
нахождения a, b и c составим систему уравнений: = 0, = 0, =0.
∂a ∂b ∂c
Отсюда получаем систему трех линейных уравнений с тремя
неизвестными:
⎧n ⎧ 4 4 4 4 4
⎪∑ i + + − = ⎪ ∑ i + ∑ + ∑ = ∑
2 2 3 2
( ax bxi c xi ) xi 0 a x b x i c xi yi xi2
⎪ i=n1 ⎪ i=41 i =1 i =1 i =1
⎪ ⎪ 4 4 4
⎨∑ i + + − = ⇔ ⎨ ∑ i + ∑ + ∑ = ∑ yi xi ⇔
2 3 2
( ax bx i c y i ) x i 0 a x b x i c x i
⎪ i=1n ⎪ i=1 4 i =1
4
i =1 i =1
4
⎪ ⎪ a x2 + b x + c ⋅ n =
∑
⎪ i=1
⎩
( ax 2
i + bx i + c − y i ) = 0 ⎪
⎩
∑
i =1
i ∑
i =1
i ∑
i =1
yi
⎧338a + 92b + 26c = 41
⎪
⎨ 92a + 26b + 8c = 11
⎪ 26a + 8b + 4c = 7
⎩
Решаем систему, имеем: a=5/6; b=-109/30; c=18/5.
Эмпирическая формула представляет собой функцию:
5 2 109 18
y= x − x+ совпадающую с алгебраическим многочленом
6 30 5
наилучшего среднеквадратичного приближения.
Сравним экспериментальные данные с результатами вычислений по
эмпирической формуле:
xi 0 1 3 4
yi 4 0 1 2
Y 18/5 4/5 1/5 12/5
Покажем это на графике:
4,5
4
3,5
3
2,5 yi
2 y
1,5
1
0,5
0
1 2 3 4
29
Страницы
- « первая
- ‹ предыдущая
- …
- 27
- 28
- 29
- 30
- 31
- …
- следующая ›
- последняя »
