Тригонометрия гиперболической плоскости положительной кривизны. Ромакина Л.Н. - 58 стр.

UptoLike

Составители: 

A ˜a
A S
b
S
c
S
b
S
c
ABC epp(I)
p
B
p
C
B C
R p
B
(0 : 1 : 2t) p
C
(1 : 0 : 2t) b
c B
p
= a p
B
B
(0 : 2t : 1) C
(2t : 0 : 1)
B
p
(1 2t
2
: 2t
2
: t)
m
b
= (ACB
A
2
) =
2t
2
2t
2
1
, m
c
= (ABC
A
1
) =
2t
2
2t
2
1
.
˜a B C
a
cos
˜a
ρ
=
2t
2
1
2t
2
, = ±1.
A C B
A
2
A
1
AA
2
B C B
p
A
(BCB
p
A
) = (ACB
A
2
).
B
p
B
BB
p
= πρ/2 B
p
˜a (BCB
p
A
) > 0 ((BCB
p
A
) < 0) ˜a < πρ/2 a > πρ/2)
= 1
epp(II) ABC
epp(I) ˜a
˜
b ˜c ¯a
˜a a 19 ¯a
¯a A
ABC ¯a
˜
b ˜a epp(II)
ABC
epp(II)
b c
B C ˜a ¯a ˜a = πρ ¯a
epp(II)
m
b
= m
c
, cos
¯a
ρ
m
b
= 1.
hpp
hpp(I)