Составители:
Рубрика:
элемента при k=2 равна из (3.2.22):
[] []
{
}
{
}
12 1 1 12
,3,349,5%P y Dy Dy P y
δδδδαα
⎡⎤
⎡⎤
∈− = ∈− =
⎣⎦
⎣⎦
. При
удвоенном интервале
[] []
{
}
22 1 1
2,2Py Dy Dy
δδδ
⎡⎤
∈−
⎣⎦
{
}
22
2 3 , 2 3 82%Py
δαα
⎡⎤
=∈− =
⎣⎦
.
Для k=3 соответствующие величины по (3.2.26) равны:
1
41%,P =
2
74%P = .
Параллельная схема. В тех же обозначениях, что и выше, при
k=2 имеем:
[] []
[
]
{
}
[
]
{
}
%823,3,
211121
=−∈=−∈
ααδδδδ
yPyDyDyP ;
[
]
%5,97
22
=yP
δ
.
При k=3:
[] []
{
}
{
}
13 1 1 13
,3,391,5%P y Dy Dy P y
δδδδαα
⎡⎤
⎡⎤
∈− = ∈− =
⎣⎦
⎣⎦
,
[
]
23
1Py
δ
= .
Таким образом, параллельная схема обеспечивает более
высокую достоверность (надежность) результата измерения,
которая возрастает с увеличением числа элементов в схеме. Для
последовательной схемы наблюдается обратная закономерность, а
именно, увеличение числа элементов в схеме снижает
достоверность результата измерения. Из полученных результатов
следует, что в параллельной схеме нет смысла объединять
большое число элементов,
так как уже при k =2…3 обеспечивается
достаточный уровень надежности. Для последовательной же
схемы снижение надежности с увеличением числа элементов не
носит катастрофического характера
Страницы
- « первая
- ‹ предыдущая
- …
- 84
- 85
- 86
- 87
- 88
- …
- следующая ›
- последняя »
