ВУЗ:
Составители:
Рубрика:
ÏÃÓ Êàô ÂèÏÌ
Êîíòðîëüíàÿ ðàáîòà ¹ 5.
65
246. а)
23
0
( 4)
х dx
x
¥
+
ò
; б)
1
13
ln(3 1)
31
x
dx
x
-
-
ò
.
247. а)
4
1
161
х dx
x
¥
-
ò
; б)
3
5
3
1
(3)
dx
x
-
ò
.
248. а)
3
4
0
161
х
dx
x
¥
+
ò
; б)
13
2
0
9 92
dx
xx
-+
ò
.
249. а)
4
0
16
161
х
dx
x
¥
-
ò
; б)
3
2
1
69
dx
хх
-+
ò
.
250. а)
4
0
161
х
dx
x
¥
+
ò
; б)
1
3
0
24
dx
x
-
ò
.
251. Вычислить площадь фигуры, ограниченной линией, заданной
уравнением в полярных координатах
3cos2.
r=j
252. Вычислить площадь фигуры, ограниченной линиями 3
yx
=-
и
11
2
22
yx=-+
.
253. Вычислить площадь фигуры, ограниченной линией, заданной па-
раметрическими уравнениями
4( sin );
4(1 cos ).
хtt
yt
=-
ì
í
=-
î
(
02
t
££p
).
254. Вычислить площадь фигуры, ограниченной линиями
3
yx
= и
31
2
44
yx=+
.
255. Вычислить площадь фигуры, ограниченной кривой, заданной
уравнением в полярной системе координат
3(1 cos)
r=+j
.
256. Вычислить площадь фигуры, ограниченной линиями 35
yx
=-
и
3
6
4
yx
=-+
.
257. Вычислить площадь фигуры, ограниченной кривой, заданной
уравнением в полярных координатах
4sin2
r=j
.
ÏÃÓ Êàô ÂèÏÌ
Êîíòðîëüíàÿ ðàáîòà ¹ 5.
¥ 1
х dx ln(3 x - 1)
246. а) ò ; б) ò 3x - 1
dx .
0 ( x 2 + 4)3 13
¥ 3
х dx dx
247. а) ò 4
; б) ò3 5
.
1 16 x - 1 1 (3 - x )
¥ 13
х3 dx
248. а) ò dx ; б) ò 2
.
0 9x - 9x + 2
4
0 16 x + 1
¥ 3
16 х dx
249. а) ò 16 x 4 - 1 dx ; б) ò 2
.
0 1 х - 6х + 9
¥ 1
х dx
250. а) ò 16 x 4 + 1 dx ; б) ò 3 2 - 4x .
0 0
251. Вычислить площадь фигуры, ограниченной линией, заданной
уравнением в полярных координатах r = 3 cos 2j.
252. Вычислить площадь фигуры, ограниченной линиями y = 3 - x и
1 1
y=- x+2 .
2 2
253. Вычислить площадь фигуры, ограниченной линией, заданной па-
ì х = 4(t - sin t );
раметрическими уравнениями í ( 0 £ t £ 2p ).
î y = 4(1 - cos t ).
254. Вычислить площадь фигуры, ограниченной линиями y = 3 x и
3 1
y= x+2 .
4 4
255. Вычислить площадь фигуры, ограниченной кривой, заданной
уравнением в полярной системе координат r = 3(1 + cos j) .
256. Вычислить площадь фигуры, ограниченной линиями y = 3 5 - x
3
и y = - x + 6.
4
257. Вычислить площадь фигуры, ограниченной кривой, заданной
уравнением в полярных координатах r = 4sin 2j .
65
Страницы
- « первая
- ‹ предыдущая
- …
- 63
- 64
- 65
- 66
- 67
- …
- следующая ›
- последняя »
