ВУЗ:
Составители:
Рубрика:
77
0
2
2
2
=Φ+
Φ
m
d
d
ϕ
(19.10)
è
0
sin
sin
sin
1
2
2
=
−+
P
m
d
dP
d
d
θ
λ
θ
θ
θθ
. (19.11)
Ðàññìîòðèì óðàâíåíèå (19.10). Óáåäèìñÿ, ÷òî åãî ðåøåíèå èìååò âèä
() ( )
ϕϕ
imC exp
⋅=Φ
. Äëÿ ýòîãî ïîäñòàâèì åãî â óðàâíåíèå (19.10):
()
.
22
2
2
Φ−=⋅−=⋅⋅⋅=
=⋅==
Φ
=
Φ
meCmeimimC
e
d
d
imCCime
d
d
d
d
d
d
d
d
imim
imim
ϕϕ
ϕϕ
ϕϕϕϕ
ϕ
Ñëåäîâàòåëüíî, óðàâíåíèå âûðîæäàåòñÿ â òîæäåñòâî: 0=0 .Ëåãêî
óáåäèòñÿ, ÷òî ôóíêöèÿ
()
ϕ
Φ
îáëàäàåò ïåðèîäè÷íîñòüþ ñ ïåðèîäîì
π
2
:
() ( )
.2
πϕϕ
+Φ=Φ
Äëÿ ýòîãî äîñòàòî÷íî âîñïîëüçîâàòüñÿ ôîðìó-
ëîé Ýéëåðà
( ) () ()
.2sin2cos2exp mimim
πππ
+=⋅
Ïîñòîÿííûé ìíîæèòåëü
m
îáÿçàí áûòü öåëûì ÷èñëîì. Ó÷èòûâàÿ, ÷òî óðàâíåíèå (19.10) ÿâëÿåòñÿ
äèôôåðåíöèàëüíûì óðàâíåíèåì âòîðîãî ïîðÿäêà, ìû ïîëó÷èì ïîëíîå ðå-
øåíèå ýòîãî óðàâíåíèÿ, åñëè ïîòðåáóåì, ÷òîáû ïîñòîÿííàÿ
m
ïðèíèìàëà
çíà÷åíèÿ 0,
....2,1 ±±
Ïîñòîÿííóþ Ñ ìîæíî îïðåäåëèòü èç óñëîâèÿ íîðìè-
ðîâêè:
∫ ∫ ∫
∫
=⋅==⋅=Φ⋅Φ
=Φ
−•
π π π
ϕϕ
π
πϕϕϕ
ϕ
2
0
2
0
2
0
22
2
2
1
2
1
CdCdCeCed
èëèd
imim
o
îòêóäà
.
2
1
π
=
C
(19.12)
Èòàê, ðåøåíèåì óðàâíåíèÿ (19.11) ÿâëÿåòñÿ ôóíêöèÿ
()
ϕ
Φ
()
.exp
2
1
ϕ
π
im
=
(19.13)
d 2Φ
+ m 2Φ = 0 (19.10)
dϕ 2
è
1 d dP m2
sin θ + λ −
P = 0 . (19.11)
sin θ dθ dθ sin 2 θ
Ðàññìîòðèì óðàâíåíèå (19.10). Óáåäèìñÿ, ÷òî åãî ðåøåíèå èìååò âèä
Φ (ϕ ) = C ⋅ exp(imϕ ) . Äëÿ ýòîãî ïîäñòàâèì åãî â óðàâíåíèå (19.10):
d 2Φ d dΦ d
dϕ 2
= =
dϕ dϕ dϕ
( )
Cime imϕ = C ⋅ im
dϕ
d imϕ
e =
= C ⋅ im ⋅ im ⋅ e imϕ = −Cm 2 ⋅ e imϕ = −m 2 Φ.
Ñëåäîâàòåëüíî, óðàâíåíèå âûðîæäàåòñÿ â òîæäåñòâî: 0=0 .Ëåãêî
óáåäèòñÿ, ÷òî ôóíêöèÿ Φ (ϕ ) îáëàäàåò ïåðèîäè÷íîñòüþ ñ ïåðèîäîì
2π : Φ (ϕ ) = Φ (ϕ + 2π ). Äëÿ ýòîãî äîñòàòî÷íî âîñïîëüçîâàòüñÿ ôîðìó-
ëîé Ýéëåðà exp(im ⋅ 2π ) = cos(2πm ) + i sin (2πm ). Ïîñòîÿííûé ìíîæèòåëü
m îáÿçàí áûòü öåëûì ÷èñëîì. Ó÷èòûâàÿ, ÷òî óðàâíåíèå (19.10) ÿâëÿåòñÿ
äèôôåðåíöèàëüíûì óðàâíåíèåì âòîðîãî ïîðÿäêà, ìû ïîëó÷èì ïîëíîå ðå-
øåíèå ýòîãî óðàâíåíèÿ, åñëè ïîòðåáóåì, ÷òîáû ïîñòîÿííàÿ m ïðèíèìàëà
çíà÷åíèÿ 0, ± 1,±2.... Ïîñòîÿííóþ Ñ ìîæíî îïðåäåëèòü èç óñëîâèÿ íîðìè-
2π
∫Φ dϕ = 1 èëè
2
o
2π 2π 2π
ðîâêè:
∫ Φ ⋅ Φ dϕ = ∫ Ce ⋅ Ce dϕ = C ∫ dϕ = C ⋅ 2π = 1
• imϕ − imϕ 2 2
0 0 0
îòêóäà
1
C= . (19.12)
2π
Èòàê, ðåøåíèåì óðàâíåíèÿ (19.11) ÿâëÿåòñÿ ôóíêöèÿ
Φ (ϕ ) = 2π exp(imϕ ).
1
(19.13)
77
Страницы
- « первая
- ‹ предыдущая
- …
- 75
- 76
- 77
- 78
- 79
- …
- следующая ›
- последняя »
