ВУЗ:
Составители:
Рубрика:
60
61
()()()()
,
2
12
2
2
12
2
12
2
12
2
ttczzyyxxS
−−−+−+−=
(8.1)
ãäå èíäåêñ 1 îòíîñèòñÿ ê ïåðâîìó ñîáûòèþ, èíäåêñ 2 êî
âòîðîìó.
Ïåðâûå òðè ñëàãàåìûå îïðåäåëÿþò ïðîñòðàíñòâåííîå
ðàññòîÿíèå ìåæäó äâóìÿ ñîáûòèÿìè, ÷åòâåðòîå ñëàãàåìîå ñâÿçàíî
ñ ïðîìåæóòêîì âðåìåíè íàñòóïëåíèÿ ýòèõ ñîáûòèé (óìíîæåííîãî
íà ñêîðîñòü ñâåòà). Õîòÿ äëèíà è ïðîìåæóòîê âðåìåíè â ÑÒÎ
îòíîñèòåëüíûå âåëè÷èíû, íî èõ êîìáèíàöèÿ â ôîðìå èíòåðâàëà
ÿâëÿåòñÿ àáñîëþòíîé âåëè÷èíîé. Äîêàæåì èíâàðèàíòíîñòü
èíòåðâàëà. Óïðîñòèì ïðåäâàðèòåëüíî ôîðìó åãî çàïèñè, ñâÿçàâ ñ
îäíèì èç ñîáûòèé íà÷àëî êîîðäèíàò è ñ÷åò âðåìåíè áóäåì âåñòè
îò ìîìåíòà âîçíèêíîâåíèÿ ýòîãî ñîáûòèÿ, ò. å. ìû áóäåì ñ÷èòàòü
0,0
1111
==== tzyx
. Òîãäà ôîðìóëà èíòåðâàëà (8.1) çàïèøåòñÿ
òàê:
.
222222
tczyxS −++=
(8.2)
Ïðè ýòîì ìû îïóñòèëè èíäåêñ 2, íî áóäåì ïîìíèòü, ÷òî è â
òàêîé ôîðìå èíòåðâàë no-ïðåæíåìó ñâÿçûâàåò äâà ñîáûòèÿ.
Âîñïîëüçóåìñÿ îáðàùåííûìè ôîðìóëàìè Ëîðåíöà (6.7) è
ïîäñòàâèì èõ â ôîðìóëó (8.2). Ïîñëå ïðèâåäåíèÿ ê îáùåìó
çíàìåíàòåëþ 1-ãî è 4-ãî ÷ëåíîâ, ðàñêðûòèÿ ñêîáîê è ñîêðàùåíèÿ
ïîäîáíûõ ÷ëåíîâ, ïîëó÷àåì:
()
.
11
22222
2
2
2
2
222
2
2
2
2
tczyx
c
v
c
xv
t
czy
c
v
tvx
S
′
−
′
+
′
+
′
=
=
−
′
+
′
−
′
+
′
+
−
′
+
′
=
(8.3)
Ìû äîêàçàëè, ÷òî èíòåðâàë â ëþáîé ÈÑÎ èìååò îäèí è òîò
æå àíàëèòè÷åñêèé âèä, îäíî è òî æå ÷èñëîâîå çíà÷åíèå, ò. å.
ÿâëÿåòñÿ àáñîëþòíîé, èíâàðèàíòíîé âåëè÷èíîé. Íà ñìåíó ïî
îòäåëüíîñòè îòíîñèòåëüíûì âåëè÷èíàì äëèíå è ïðîìåæóòêàì
âðåìåíè â ÑÒÎ ââîäèòñÿ íîâàÿ àáñîëþòíàÿ âåëè÷èíà
èíòåðâàë.
íà Çåìëþ, êîñìîíàâòó ïðèäåòñÿ äâèãàòüñÿ ñ óñêîðåíèåì (÷òîáû
èçìåíèòü íàïðàâëåíèå äâèæåíèÿ), à ïîýòîìó ðàññóæäåíèÿ ÑÒÎ
íà ýòîì ó÷àñòêå äâèæåíèÿ îá îòíîñèòåëüíîñòè âðåìåííûõ
ïðîìåæóòêîâ íåïðèãîäíû. Èìåííî â îáùåé òåîðèè
îòíîñèòåëüíîñòè ðàññìàòðèâàþòñÿ íå èíåðöèàëüíûå ÑÎ è
ïîêàçûâàåòñÿ àáñîëþòíîå çàìåäëåíèå õîäà âðåìåíè â íèõ. Âñå
ïîïûòêè íà îñíîâå ÑÒÎ îáúÿñíèòü ïàðàäîêñ áëèçíåöîâ ñîäåðæàò
ïðèíöèïèàëüíóþ íåòî÷íîñòü: ðàçâîðîò êîðàáëÿ ñ÷èòàåòñÿ
ìãíîâåííûì, à ýòî íåâåðíî.
Äëÿ äàëüíåéøåãî çàêðåïëåíèÿ ìàòåðèàëà ïî êèíåìàòèêå
ÑÒÎ îòñûëàåì ÷èòàòåëÿ ê ñïåöèàëüíûì çàäà÷íèêàì ïî ÑÒÎ (ñì.
ñïèñîê ëèòåðàòóðû, à òàêæå ïðèë. 5).
§ 8. Èíòåðâàë, åãî èíâàðèàíòíîñòü. Äâà âèäà èíòåðâàëà.
Ñâåòîâîé êîíóñ
Êàê è â ëþáîé äðóãîé ôèçè÷åñêîé òåîðèè, â ÑÒÎ ïîìèìî
îòíîñèòåëüíûõ âåëè÷èí, ÷èñëåííîå çíà÷åíèå êîòîðûõ ñâÿçàíî ñ
âûáîðîì ÑÎ, èìååòñÿ îïðåäåëåííîå êîëè÷åñòâî àáñîëþòíûõ
õàðàêòåðèñòèê. Ïî ñðàâíåíèþ ñ êëàññè÷åñêîé ôèçèêîé, ÑÒÎ
èçìåíèëà ñîîòíîøåíèå ÷èñëà è âèäà àáñîëþòíûõ è
îòíîñèòåëüíûõ âåëè÷èí. Òàê, äëèíà èç ðàíãà àáñîëþòíûõ âåëè÷èí
ïåðåøëà â ðàíã îòíîñèòåëüíûõ. Îäíàêî äëèíà òåëà â ïîêîå åñòü
åãî àáñîëþòíàÿ õàðàêòåðèñòèêà. Àáñîëþòíîé âåëè÷èíîé ÿâëÿåòñÿ
è ñîáñòâåííàÿ äëèòåëüíîñòü ñîáûòèÿ, àáñîëþòíîé âåëè÷èíîé
ÿâëÿåòñÿ è ñêîðîñòü ñâåòà â âàêóóìå. Ïîýòîìó íåâåðíî
óòâåðæäåíèå, ÷òî áóäòî áû ÑÒÎ âñå ñäåëàëà îòíîñèòåëüíûì.
Íàîáîðîò, ÑÒÎ îáíàðóæèëà áîëåå ãëóáîêèå ñâîéñòâà
îêðóæàþùåãî íàñ ìèðà, åãî îáúåêòèâíîñòü, åãî ïîçíàâàåìîñòü.
Ñðåäè íîâûõ, îòñóòñòâîâàâøèõ â êëàññè÷åñêîé ôèçèêå,
àáñîëþòíûõ âåëè÷èí ÑÒÎ ââîäèò òàê íàçûâàåìûé èíòåðâàë.
Îñîáåííîñòüþ ýòîé âåëè÷èíû ÿâëÿåòñÿ òî, ÷òî îíà ñâÿçûâàåò
ïðîñòðàíñòâåííûå è âðåìåííûå õàðàêòåðèñòèêè äâóõ ñîáûòèé.
Èíòåðâàë ââîäèòñÿ ñëåäóþùèì îáðàçîì, åãî êâàäðàò
îïðåäåëÿåòñÿ òàê:
íà Çåìëþ, êîñìîíàâòó ïðèäåòñÿ äâèãàòüñÿ ñ óñêîðåíèåì (÷òîáû
S 2 = (x 2 − x1 )2 + ( y 2 − y1 )2 + (z 2 − z1 )2 − c 2 (t 2 − t1 )2 , (8.1)
èçìåíèòü íàïðàâëåíèå äâèæåíèÿ), à ïîýòîìó ðàññóæäåíèÿ ÑÒÎ
íà ýòîì ó÷àñòêå äâèæåíèÿ îá îòíîñèòåëüíîñòè âðåìåííûõ
ïðîìåæóòêîâ íåïðèãîäíû. Èìåííî â îáùåé òåîðèè ãäå èíäåêñ 1 îòíîñèòñÿ ê ïåðâîìó ñîáûòèþ, èíäåêñ 2 êî
îòíîñèòåëüíîñòè ðàññìàòðèâàþòñÿ íå èíåðöèàëüíûå ÑÎ è âòîðîìó.
ïîêàçûâàåòñÿ àáñîëþòíîå çàìåäëåíèå õîäà âðåìåíè â íèõ. Âñå Ïåðâûå òðè ñëàãàåìûå îïðåäåëÿþò ïðîñòðàíñòâåííîå
ïîïûòêè íà îñíîâå ÑÒÎ îáúÿñíèòü ïàðàäîêñ áëèçíåöîâ ñîäåðæàò ðàññòîÿíèå ìåæäó äâóìÿ ñîáûòèÿìè, ÷åòâåðòîå ñëàãàåìîå ñâÿçàíî
ïðèíöèïèàëüíóþ íåòî÷íîñòü: ðàçâîðîò êîðàáëÿ ñ÷èòàåòñÿ ñ ïðîìåæóòêîì âðåìåíè íàñòóïëåíèÿ ýòèõ ñîáûòèé (óìíîæåííîãî
ìãíîâåííûì, à ýòî íåâåðíî. íà ñêîðîñòü ñâåòà). Õîòÿ äëèíà è ïðîìåæóòîê âðåìåíè â ÑÒÎ
Äëÿ äàëüíåéøåãî çàêðåïëåíèÿ ìàòåðèàëà ïî êèíåìàòèêå îòíîñèòåëüíûå âåëè÷èíû, íî èõ êîìáèíàöèÿ â ôîðìå èíòåðâàëà
ÑÒÎ îòñûëàåì ÷èòàòåëÿ ê ñïåöèàëüíûì çàäà÷íèêàì ïî ÑÒÎ (ñì. ÿâëÿåòñÿ àáñîëþòíîé âåëè÷èíîé. Äîêàæåì èíâàðèàíòíîñòü
ñïèñîê ëèòåðàòóðû, à òàêæå ïðèë. 5). èíòåðâàëà. Óïðîñòèì ïðåäâàðèòåëüíî ôîðìó åãî çàïèñè, ñâÿçàâ ñ
îäíèì èç ñîáûòèé íà÷àëî êîîðäèíàò è ñ÷åò âðåìåíè áóäåì âåñòè
§ 8. Èíòåðâàë, åãî èíâàðèàíòíîñòü. Äâà âèäà èíòåðâàëà. îò ìîìåíòà âîçíèêíîâåíèÿ ýòîãî ñîáûòèÿ, ò. å. ìû áóäåì ñ÷èòàòü
Ñâåòîâîé êîíóñ x1 = y1 = z1 = 0, t1 = 0 . Òîãäà ôîðìóëà èíòåðâàëà (8.1) çàïèøåòñÿ
òàê:
Êàê è â ëþáîé äðóãîé ôèçè÷åñêîé òåîðèè, â ÑÒÎ ïîìèìî S 2 = x 2 + y 2 + z 2 − c 2t 2 .(8.2)
îòíîñèòåëüíûõ âåëè÷èí, ÷èñëåííîå çíà÷åíèå êîòîðûõ ñâÿçàíî ñ
Ïðè ýòîì ìû îïóñòèëè èíäåêñ 2, íî áóäåì ïîìíèòü, ÷òî è â
âûáîðîì ÑÎ, èìååòñÿ îïðåäåëåííîå êîëè÷åñòâî àáñîëþòíûõ
òàêîé ôîðìå èíòåðâàë no-ïðåæíåìó ñâÿçûâàåò äâà ñîáûòèÿ.
õàðàêòåðèñòèê. Ïî ñðàâíåíèþ ñ êëàññè÷åñêîé ôèçèêîé, ÑÒÎ Âîñïîëüçóåìñÿ îáðàùåííûìè ôîðìóëàìè Ëîðåíöà (6.7) è
èçìåíèëà ñîîòíîøåíèå ÷èñëà è âèäà àáñîëþòíûõ è ïîäñòàâèì èõ â ôîðìóëó (8.2). Ïîñëå ïðèâåäåíèÿ ê îáùåìó
îòíîñèòåëüíûõ âåëè÷èí. Òàê, äëèíà èç ðàíãà àáñîëþòíûõ âåëè÷èí çíàìåíàòåëþ 1-ãî è 4-ãî ÷ëåíîâ, ðàñêðûòèÿ ñêîáîê è ñîêðàùåíèÿ
ïåðåøëà â ðàíã îòíîñèòåëüíûõ. Îäíàêî äëèíà òåëà â ïîêîå åñòü ïîäîáíûõ ÷ëåíîâ, ïîëó÷àåì:
åãî àáñîëþòíàÿ õàðàêòåðèñòèêà. Àáñîëþòíîé âåëè÷èíîé ÿâëÿåòñÿ
è ñîáñòâåííàÿ äëèòåëüíîñòü ñîáûòèÿ, àáñîëþòíîé âåëè÷èíîé vx ′
2
t′ + 2
ÿâëÿåòñÿ è ñêîðîñòü ñâåòà â âàêóóìå. Ïîýòîìó íåâåðíî
S2 =
(x + vt ) + y ′2 + z ′ 2 − c 2 c =
′ ′ 2
óòâåðæäåíèå, ÷òî áóäòî áû ÑÒÎ âñå ñäåëàëà îòíîñèòåëüíûì. v2 v2
Íàîáîðîò, ÑÒÎ îáíàðóæèëà áîëåå ãëóáîêèå ñâîéñòâà 1− 2 1− 2 (8.3)
c c
îêðóæàþùåãî íàñ ìèðà, åãî îáúåêòèâíîñòü, åãî ïîçíàâàåìîñòü.
= x ′2 + y ′2 + z ′ 2 − c 2 t ′2 .
Ñðåäè íîâûõ, îòñóòñòâîâàâøèõ â êëàññè÷åñêîé ôèçèêå,
àáñîëþòíûõ âåëè÷èí ÑÒÎ ââîäèò òàê íàçûâàåìûé èíòåðâàë. Ìû äîêàçàëè, ÷òî èíòåðâàë â ëþáîé ÈÑÎ èìååò îäèí è òîò
Îñîáåííîñòüþ ýòîé âåëè÷èíû ÿâëÿåòñÿ òî, ÷òî îíà ñâÿçûâàåò æå àíàëèòè÷åñêèé âèä, îäíî è òî æå ÷èñëîâîå çíà÷åíèå, ò. å.
ïðîñòðàíñòâåííûå è âðåìåííûå õàðàêòåðèñòèêè äâóõ ñîáûòèé. ÿâëÿåòñÿ àáñîëþòíîé, èíâàðèàíòíîé âåëè÷èíîé. Íà ñìåíó ïî
Èíòåðâàë ââîäèòñÿ ñëåäóþùèì îáðàçîì, åãî êâàäðàò îòäåëüíîñòè îòíîñèòåëüíûì âåëè÷èíàì äëèíå è ïðîìåæóòêàì
îïðåäåëÿåòñÿ òàê: âðåìåíè â ÑÒÎ ââîäèòñÿ íîâàÿ àáñîëþòíàÿ âåëè÷èíà
èíòåðâàë.
60 61
Страницы
- « первая
- ‹ предыдущая
- …
- 29
- 30
- 31
- 32
- 33
- …
- следующая ›
- последняя »
