Теория относительности. Учебное пособие. Розман Г.А. - 33 стр.

UptoLike

Составители: 

Рубрика: 

64
65
àáñîëþòíî, ìåæäó íèìè ìîæåò áûòü ïðè÷èííî-ñëåäñòâåííàÿ
ñâÿçü.
Ðàññìàòðèâàÿ ñîáûòèÿ Î è Â, äëÿ êîòîðûõ R>ñÒ,
óñòàíàâëèâàåì, ÷òî îíè ÿâëÿþòñÿ ïðîñòðàíñòâåííî-ïîäîáíûìè,
íè â îäíîé ÈÑÎ ìåæäó íèìè íå ìîæåò áûòü ïðè÷èííî-ñëåä-
ñòâåííîé ñâÿçè, òàê êàê äàæå ñàìûé áûñòðûé ñâåòîâîé ñèãíàë,
èñïóùåííûé èç òî÷êè Î, çà âðåìÿ Ò ÷åðåäîâàíèÿ ñîáûòèé íå
ìîæåò ïðåîäîëåòü ðàññòîÿíèå, ðàçäåëÿþùåå ñîáûòèÿ, íå ìîæåò
òåì ñàìûì ïîâëèÿòü íà ñîáûòèå Â.
Âîçíèêàåò âîïðîñ: â êàêîé ïðè÷èííîé ñâÿçè íàõîäÿòñÿ ìåæäó
ñîáîé ñîáûòèÿ À è Â? Äëÿ îòâåòà íà ýòîò âîïðîñ íåîáõîäèìî
ïîñòðîèòü íîâóþ ïðîñòðàíñòâåííî-âðåìåííóþ äèàãðàììó ñ
íà÷àëîì â îäíîì èç ýòèõ ñîáûòèé, ñîõðàíÿÿ íàïðàâëåíèå îñåé, è
ïðîâåñòè ðàññóæäåíèÿ, àíàëîãè÷íûå ïðåäûäóùèì.
Ïðÿìûå |R| = |ñÒ| ÿâëÿþòñÿ ïðîñòðàíñòâåííî-âðåìåííûìè
òðàåêòîðèÿìè ñâåòîâûõ ëó÷åé. Ñ èõ ïîìîùüþ ïðîñòðàíñòâåííî-
âðåìåííàÿ ïëîñêîñòü ðàçäåëÿåòñÿ íà ÷åòûðå êâàäðàíòà, êàæäîé
òî÷êå êîòîðûõ (ìèðîâîé òî÷êå) ñîîòâåòñòâóåò êàêîå-ëèáî
ñîáûòèå. Âñå ñîáûòèÿ, ïðîèñøåäøèå â ìîìåíò âðåìåíè Ò>0 è
êîòîðûì ñîîòâåòñòâóþò ìèðîâûå òî÷êè â 1-ì êâàäðàíòå,
ïðîèñõîäÿò â áóäóùåì ïî îòíîøåíèþ ê ñîáûòèþ Î, ïðè÷åì ýòî
óòâåðæäåíèå èìååò àáñîëþòíûé õàðàêòåð. Òî÷íî òàêæå âñå
ñîáûòèÿ, ìèðîâûå òî÷êè êîòîðûõ ðàñïîëàãàþòñÿ âî 2-ì
êâàäðàíòå, ïðîèçîøëè â ïðîøëîì ïî îòíîøåíèþ ê ñîáûòèþ Î.
2-é êâàäðàíò îïðåäåëÿåò ñîáûòèÿ, àáñîëþòíî ïðîøëûå ïî
îòíîøåíèþ ê ñîáûòèþ â ò. Î.
 êâàäðàíòàõ 3-ì è 4-ì íàõîäÿòñÿ ìèðîâûå òî÷êè ñîáûòèé,
êîòîðûå ïî îòíîøåíèþ ê ñîáûòèþ Î íàõîäÿòñÿ àáñîëþòíî ñëåâà
èëè ñïðàâà, è ýòî óòâåðæäåíèå ñîõðàíÿåòñÿ â ëþáîé äðóãîé ÈÑÎ,
òàê êàê äëÿ ýòèõ ñîáûòèé àáñîëþòíûì ÿâëÿåòñÿ ðàñïîëîæåíèå â
ïðîñòðàíñòâå, âðåìåííîé æå ïîðÿäîê êàæäîãî èç ýòèõ ñîáûòèé
ïî îòíîøåíèþ ê ñîáûòèþ Î  îòíîñèòåëåí.
ñóùåñòâîâàòü âñåîáùàÿ ïðè÷èííî-ñëåäñòâåííàÿ ñâÿçü. Ãîâîðÿò,
÷òî êëàññè÷åñêàÿ ôèçèêà îñíîâàíà íà àáñîëþòíîì äåòåðìèíèçìå.
Òàêèì îáðàçîì, ïðèçíàíèå ïðåäåëüíîñòè ñêîðîñòè ñâåòà â
âàêóóìå, óòâåðæäåíèå ïðèíöèïà áëèçêîäåéñòâèÿ, ïîçâîëÿåò
ôèçèêå ïðàâèëüíåå, ãëóáæå âûÿñíèòü âçàèìîñâÿçü è
âçàèìîîáóñëîâëåííîñòü ñîáûòèé â ìèðå. Â ýòîì îäíà èç çàñëóã
ñïåöèàëüíîé òåîðèè îòíîñèòåëüíîñòè.
Çàäà÷ó î õàðàêòåðå ñâÿçè ìåæäó ïàðîé ñîáûòèé ïîçâîëÿåò
ãðàôè÷åñêè ðåøèòü ïðîñòðàíñòâåííî-âðåìåííàÿ äèàãðàììà,
ïîëó÷èâøàÿ íàçâàíèå ñâåòîâîé êîíóñ. Åãî îáðàçóþùèå
óäîâëåòâîðÿþò óñëîâèþ
cTR =
, ïðè âûïîëíåíèè êîòîðîãî
0
2
=
S
. Ñîîòâåòñòâóþùèé èíòåðâàë ïîëó÷èë íàçâàíèå ñâåòî-
ïîäîáíîãî èíòåðâàëà, (ðèñ. 11). Íà îñÿõ ïðîñòðàíñòâåííî-
âðåìåííîé äèàãðàììû îòêëàäûâàþòñÿ îäíîðîäíûå âåëè÷èíû R
è ñÒ, ïîýòîìó áèññåêòðèñû óãëîâ óäîâëåòâîðÿþò óðàâíåíèþ |R |
= |ñÒ|, êîòîðîå ÿâëÿåòñÿ óðàâíåíèåì äâèæåíèÿ ñâåòîâîãî ëó÷à,
èñïóùåííîãî èç íà÷àëà êîîðäèíàò â íóëåâîé ìîìåíò âðåìåíè.
Îäíî èç ñîáûòèé ïîìåùàåì â íà÷àëî êîîðäèíàò. Äðóãîå ïóñòü
îïðåäåëÿåòñÿ êîîðäèíàòàìè ò. À. Èç äèãðàììû âèäíî, ÷òî äëÿ
ñîáûòèé Î è A R< cT, ò. å. S
2
< 0. Ñëåäîâòåëüíî, ýòè ñîáûòèÿ
ÿâëÿþòñÿ âðåìåííî-ïîäîáíûìè, èõ ÷åðåäîâàíèå âî âðåìåíè
Ðèñ. 11.
A
B
I
II
III
IV
O
R
cT
ñóùåñòâîâàòü âñåîáùàÿ ïðè÷èííî-ñëåäñòâåííàÿ ñâÿçü. Ãîâîðÿò,    àáñîëþòíî, ìåæäó íèìè ìîæåò áûòü ïðè÷èííî-ñëåäñòâåííàÿ
÷òî êëàññè÷åñêàÿ ôèçèêà îñíîâàíà íà àáñîëþòíîì äåòåðìèíèçìå.   ñâÿçü.
Òàêèì îáðàçîì, ïðèçíàíèå ïðåäåëüíîñòè ñêîðîñòè ñâåòà â              Ðàññìàòðèâàÿ ñîáûòèÿ Î è Â, äëÿ êîòîðûõ R>ñÒ,
âàêóóìå, óòâåðæäåíèå ïðèíöèïà áëèçêîäåéñòâèÿ, ïîçâîëÿåò        óñòàíàâëèâàåì, ÷òî îíè ÿâëÿþòñÿ ïðîñòðàíñòâåííî-ïîäîáíûìè,
ôèçèêå ïðàâèëüíåå, ãëóáæå âûÿñíèòü âçàèìîñâÿçü è               íè â îäíîé ÈÑÎ ìåæäó íèìè íå ìîæåò áûòü ïðè÷èííî-ñëåä-
âçàèìîîáóñëîâëåííîñòü ñîáûòèé â ìèðå. Â ýòîì îäíà èç çàñëóã    ñòâåííîé ñâÿçè, òàê êàê äàæå ñàìûé áûñòðûé ñâåòîâîé ñèãíàë,
ñïåöèàëüíîé òåîðèè îòíîñèòåëüíîñòè.                            èñïóùåííûé èç òî÷êè Î, çà âðåìÿ Ò ÷åðåäîâàíèÿ ñîáûòèé íå
     Çàäà÷ó î õàðàêòåðå ñâÿçè ìåæäó ïàðîé ñîáûòèé ïîçâîëÿåò    ìîæåò ïðåîäîëåòü ðàññòîÿíèå, ðàçäåëÿþùåå ñîáûòèÿ, íå ìîæåò
ãðàôè÷åñêè ðåøèòü ïðîñòðàíñòâåííî-âðåìåííàÿ äèàãðàììà,         òåì ñàìûì ïîâëèÿòü íà ñîáûòèå Â.
ïîëó÷èâøàÿ íàçâàíèå “ñâåòîâîé êîíóñ”. Åãî îáðàçóþùèå                Âîçíèêàåò âîïðîñ: â êàêîé ïðè÷èííîé ñâÿçè íàõîäÿòñÿ ìåæäó
óäîâëåòâîðÿþò óñëîâèþ R = cT , ïðè âûïîëíåíèè êîòîðîãî         ñîáîé ñîáûòèÿ À è Â? Äëÿ îòâåòà íà ýòîò âîïðîñ íåîáõîäèìî
                                                               ïîñòðîèòü íîâóþ ïðîñòðàíñòâåííî-âðåìåííóþ äèàãðàììó ñ
S 2 = 0 . Ñîîòâåòñòâóþùèé èíòåðâàë ïîëó÷èë íàçâàíèå ñâåòî-     íà÷àëîì â îäíîì èç ýòèõ ñîáûòèé, ñîõðàíÿÿ íàïðàâëåíèå îñåé, è
ïîäîáíîãî èíòåðâàëà, (ðèñ. 11). Íà îñÿõ ïðîñòðàíñòâåííî-       ïðîâåñòè ðàññóæäåíèÿ, àíàëîãè÷íûå ïðåäûäóùèì.
                                                                    Ïðÿìûå |R| = |ñÒ| ÿâëÿþòñÿ ïðîñòðàíñòâåííî-âðåìåííûìè
                          cT
                                                               òðàåêòîðèÿìè ñâåòîâûõ ëó÷åé. Ñ èõ ïîìîùüþ ïðîñòðàíñòâåííî-
                      I
                                                               âðåìåííàÿ ïëîñêîñòü ðàçäåëÿåòñÿ íà ÷åòûðå êâàäðàíòà, êàæäîé
                                     A
                                                               òî÷êå êîòîðûõ (ìèðîâîé òî÷êå) ñîîòâåòñòâóåò êàêîå-ëèáî
                                             IV                ñîáûòèå. Âñå ñîáûòèÿ, ïðîèñøåäøèå â ìîìåíò âðåìåíè Ò>0 è
              III                        B                     êîòîðûì ñîîòâåòñòâóþò ìèðîâûå òî÷êè â 1-ì êâàäðàíòå,
                                                               ïðîèñõîäÿò â áóäóùåì ïî îòíîøåíèþ ê ñîáûòèþ Î, ïðè÷åì ýòî
                            O                 R                óòâåðæäåíèå èìååò àáñîëþòíûé õàðàêòåð. Òî÷íî òàêæå âñå
                                                               ñîáûòèÿ, ìèðîâûå òî÷êè êîòîðûõ ðàñïîëàãàþòñÿ âî 2-ì
                                                               êâàäðàíòå, ïðîèçîøëè â ïðîøëîì ïî îòíîøåíèþ ê ñîáûòèþ Î.
                                                               2-é êâàäðàíò îïðåäåëÿåò ñîáûòèÿ, àáñîëþòíî ïðîøëûå ïî
                     II                                        îòíîøåíèþ ê ñîáûòèþ â ò. Î.
                          Ðèñ. 11.                                   êâàäðàíòàõ 3-ì è 4-ì íàõîäÿòñÿ ìèðîâûå òî÷êè ñîáûòèé,
                                                               êîòîðûå ïî îòíîøåíèþ ê ñîáûòèþ Î íàõîäÿòñÿ àáñîëþòíî ñëåâà
âðåìåííîé äèàãðàììû îòêëàäûâàþòñÿ îäíîðîäíûå âåëè÷èíû R        èëè ñïðàâà, è ýòî óòâåðæäåíèå ñîõðàíÿåòñÿ â ëþáîé äðóãîé ÈÑÎ,
è ñÒ, ïîýòîìó áèññåêòðèñû óãëîâ óäîâëåòâîðÿþò óðàâíåíèþ |R |   òàê êàê äëÿ ýòèõ ñîáûòèé àáñîëþòíûì ÿâëÿåòñÿ ðàñïîëîæåíèå â
= |ñÒ|, êîòîðîå ÿâëÿåòñÿ óðàâíåíèåì äâèæåíèÿ ñâåòîâîãî ëó÷à,   ïðîñòðàíñòâå, âðåìåííîé æå ïîðÿäîê êàæäîãî èç ýòèõ ñîáûòèé
èñïóùåííîãî èç íà÷àëà êîîðäèíàò â íóëåâîé ìîìåíò âðåìåíè.      ïî îòíîøåíèþ ê ñîáûòèþ Î — îòíîñèòåëåí.
Îäíî èç ñîáûòèé ïîìåùàåì â íà÷àëî êîîðäèíàò. Äðóãîå ïóñòü
îïðåäåëÿåòñÿ êîîðäèíàòàìè ò. À. Èç äèãðàììû âèäíî, ÷òî äëÿ
ñîáûòèé Î è A R< cT, ò. å. S2 < 0. Ñëåäîâòåëüíî, ýòè ñîáûòèÿ
ÿâëÿþòñÿ âðåìåííî-ïîäîáíûìè, èõ ÷åðåäîâàíèå âî âðåìåíè

64                                                                                                                        65