Теория относительности. Учебное пособие. Розман Г.А. - 34 стр.

UptoLike

Составители: 

Рубрика: 

66
67
,
1
;;;
1
2
14
43322
2
41
1
β
β
β
β
=
=
=
+
=
xix
xxxxx
xix
x
(9.2)
ãäå
.
c
v
=
β
=
=+++=
4
1
22
4
2
3
2
2
2
1
2
i
i
xxxxxS
. (9.3)
 òàêîé çàïèñè êâàäðàò èíòåðâàëà ìîæíî òîëêîâàòü êàê
êâàäðàò ðàññòîÿíèÿ â 4-ìåðíîì ìèðå (ïî àíàëîãèè ñ
2
3
2
2
2
1
2
xxxR ++=
). Òàê êàê îäíî èç 2-õ ñîáûòèé, ñâÿçàííûõ
èíòåðâàëîì, íàõîäèòñÿ â íà÷àëå êîîðäèíàò, òî êâàäðàò èíòåðâàëà
îïðåäåëÿåò êâàäðàò 4-ìåðíîãî ðàäèóñ-âåêòîðà, ïðîâåäåííîãî èç
íà÷àëà êîîðäèíàò â ìèðîâóþ òî÷êó, ñîîòâåòñòâóþùóþ âòîðîìó
ñîáûòèþ. À ó÷èòûâàÿ èíâàðèàíòíîñòü êâàäðàòà èíòåðâàëà
îòíîñèòåëüíî ôîðìóë ïðåîáðàçîâàíèÿ Ëîðåíöà, ìîæíî
ñôîðìóëèðîâàòü ñëåäóþùóþ òåîðåìó äëÿ 4-ìåðíîãî ìèðà
Ìèíêîâñêîãî: êâàäðàò ëþáîãî 4-
õ
-âåêòîðà â ìèðå Ìèíêîâñêîãî
ÿâëÿåòñÿ èíâàðèàíòîì îòíîñèòåëüíî ôîðìóë ïðåîáðàçîâàíèÿ
Ëîðåíöà. Ìû íåîäíîêðàòíî áóäåì ïîëüçîâàòüñÿ ýòîé òåîðåìîé.
Òåïåðü ïåðåä íàìè ñòîèò çàäà÷à çàïèñàòü óðàâíåíèÿ äâè-
æåíèÿ â 4-ìåðíîé ôîðìå, ÷åðåç 4-ìåðíûå âåêòîðû, çàêîí
ïðåîáðàçîâàíèÿ êîìïîíåíò êîòîðûõ íàì èçâåñòåí. Ìû íà÷èíàåì
ñòðîèòü äèíàìèêó ÑÒÎ.
Íà÷íåì ñ ïîñòðîåíèÿ 4~
õ
-âåêòîðà ñêîðîñòè. ×òîáû ïîëó÷èòü
èíâàðèàíòíóþ âåëè÷èíó, íóæíî, ñîãëàñíî îïðåäåëåíèþ ñêîðîñòè,
ïðèðàùåíèå 4-ìåðíîãî èíâàðèàíòíîãî ðàäèóñ-âåêòîðà
),,,(
4321
xxxxR
r
ïîäåëèòü íà ïðîìåæóòîê èíâàðèàíòíîãî âðåìåíè,
â òå÷åíèå êîòîðîãî ïðîèñõîäèëî äâèæåíèå âäîëü ìèðîâîé ëèíèè.
Òàêèì âðåìåíåì ÿâëÿåòñÿ ñîáñòâåííàÿ äëèòåëüíîñòü ïðîöåññà.
Èòàê, 4~
õ
-âåêòîð ñêîðîñòè ââîäèòñÿ ïî îïðåäåëåíèþ ïðè
ïîìîùè ñëåäóþùåãî ñîîòíîøåíèÿ (â äàëüíåéøåì çàïèñü
ïðèðàùåíèé áóäåì âåñòè â äèôôåðåíöèàëüíîé ôîðìå, äëÿ
ñîáñòâåííîãî âðåìåíè ââåäåì îáîçíà÷åíèå
τ
(òàó) ):
§ 9. ×åòûðåõìåðíûé ìèð Ìèíêîâñêîãî
×èòàòåëþ, íàâåðíîå, èçâåñòíî, ÷òî êëàññè÷åñêàÿ ìåõàíèêà
èìååò íåñêîëüêî ðàçëè÷íûõ ìàòåìàòè÷åñêèõ ïðåäñòàâëåíèé:
ìåõàíèêà â ôîðìå Íüþòîíà, Ãàìèëüòîíîâà ôîðìà êëàññè÷åñêîé
ìåõàíèêè, Ëàíãðàíæåâà ôîðìà è ò.ä. Êàæäîå èç íèõ
öåëåñîîáðàçíî ïðèìåíÿòü äëÿ ðåøåíèÿ çàäà÷ îïðåäåëåííîãî
êðóãà. Íî âñå îíè, â ïðèíöèïå, ðàâíîöåííû.
Ïîñëå òàêîãî çàìå÷àíèÿ, ÷èòàòåëü íå áóäåò óäèâëåí òîìó, ÷òî
â 1909 ã. íåìåöêèé ìàòåìàòèê Ã. Ìèíêîâñêèé ïðèäàë ôîðìóëàì ÑÒÎ
áîëåå ñèììåòðè÷íûé âèä, ââåäÿ âìåñòî îáû÷íûõ îáîçíà÷åíèé
ïðîñòðàíñòâåííûõ êîîðäèíàò õ, ó, z è âðåìåíè t, ñèììåòðè÷íûå
÷åòûðå êîîðäèíàòû:
.,,,
4321
xxxx
Îäíàêî â îòëè÷èå îò ðàíåå
ââåäåííûõ â §8 ïîäîáíûõ êîîðäèíàò, ÷åòâåðòàÿ êîîðäèíàòà
Ìèíêîâñêîãî õ
4
ñâÿçàíà ñî âðåìåíåì èíà÷å, à èìåííî òàê:
õ
4
=ict. (9.1)
Ìíèìîñòü ýòîé êîîðäèíàòû íå èìååò íèêàêîãî ôèçè÷åñêî-
ãî ñìûñëà è ââåäåíà äëÿ ñèììåòðèçàöèè ôîðìóë ÑÒÎ.  êîíå÷íûõ
âûðàæåíèÿõ ìíèìîñòü óñòðàíÿåòñÿ, è ìû ñíîâà ïîëó÷àåì
ðåàëüíûå ïðîñòðàíñòâåííûå êîîðäèíàòû è âðåìÿ. Ñëåäóåò
çàìåòèòü, ÷òî ïåðâîíà÷àëüíî ðÿä ôèçèêîâ è ôèëîñîôîâ
âîñïðèíèìàëè ìíèìîñòü ÷åòâåðòîé êîîðäèíàòû íå òàê
îäíîçíà÷íî. Åñëè ó÷åñòü, ÷òî èìåííî Ìèíêîâñêèé íàçâàë
èçó÷àåìóþ íàìè òåîðèþ ñïåöèàëüíîé òåîðèåé îòíîñèòåëüíîñòè,
à ðÿä ó÷åíûõ äåëàëè àêöåíò íà ïîñëåäíåì ñëîâå â íàçâàíèè, òî
ìîæíî ïîíÿòü, ïî÷åìó ïåðâîíà÷àëüíî íå âñå ó÷åíûå
âîñïðèíèìàëè ÑÒÎ êàê ìàòåðèàëèñòè÷åñêîå ó÷åíèå.
Ñîâîêóïíîñòü ÷åòûðåõ êîîðäèíàò x
t,
, õ
2
, x
3
, õ
4
îäíîçíà÷íî
îïðåäåëÿåò ñîáûòèå â 4-ìåðíîì ìèðå ïðîñòðàíñòâà  âðåìåíè.
Èçìåíåíèå ñîñòîÿíèÿ îáúåêòà, èçìåíåíèå õîòÿ áû îäíîé èç 4-õ
êîîðäèíàò (à õ
4
ñâÿçàíà ñî âðåìåíåì è èçìåíÿåòñÿ íåïðåðûâíî)
ïðèâîäèò ê ïåðåìåùåíèþ ìèðîâîé òî÷êè. Íåïðåðûâíàÿ ïîñëå-
äîâàòåëüíîñòü ìèðîâûõ òî÷åê, îïðåäåëÿþùèõ ñîñòîÿíèå îäíîãî
è òîãî æå îáúåêòà, îáðàçóåò ìèðîâóþ òðàåêòîðèþ.
Èñïîëüçóÿ îáîçíà÷åíèÿ Ìèíêîâñêîãî, çàïèøåì ôîðìóëû
Ëîðåíöà è èíòåðâàë:
             § 9. ×åòûðåõìåðíûé ìèð Ìèíêîâñêîãî                                    x1 + iβx 4                                        x 4 − iβx1
                                                                           x1′ =                ; x 2′ = x 2 ; x 3′ = x 3 ; x 4′ =                ,
                                                                                                                                                      (9.2)
     ×èòàòåëþ, íàâåðíîå, èçâåñòíî, ÷òî êëàññè÷åñêàÿ ìåõàíèêà                        1− β 2                                            1− β 2
èìååò íåñêîëüêî ðàçëè÷íûõ ìàòåìàòè÷åñêèõ ïðåäñòàâëåíèé:                      v
ìåõàíèêà â ôîðìå Íüþòîíà, Ãàìèëüòîíîâà ôîðìà êëàññè÷åñêîé            ãäå   β= .
                                                                             c
ìåõàíèêè, Ëàíãðàíæåâà ôîðìà è ò.ä. Êàæäîå èç íèõ
öåëåñîîáðàçíî ïðèìåíÿòü äëÿ ðåøåíèÿ çàäà÷ îïðåäåëåííîãî                                                                4
                                                                                     S 2 = x12 + x 22 + x 32 + x 42 = ∑ xi2 .                         (9.3)
êðóãà. Íî âñå îíè, â ïðèíöèïå, ðàâíîöåííû.                                                                            i =1
     Ïîñëå òàêîãî çàìå÷àíèÿ, ÷èòàòåëü íå áóäåò óäèâëåí òîìó, ÷òî
                                                                         Â òàêîé çàïèñè êâàäðàò èíòåðâàëà ìîæíî òîëêîâàòü êàê
â 1909 ã. íåìåöêèé ìàòåìàòèê Ã. Ìèíêîâñêèé ïðèäàë ôîðìóëàì ÑÒÎ
                                                                     êâàäðàò ðàññòîÿíèÿ â 4-ìåðíîì ìèðå (ïî àíàëîãèè ñ
áîëåå ñèììåòðè÷íûé âèä, ââåäÿ âìåñòî îáû÷íûõ îáîçíà÷åíèé
ïðîñòðàíñòâåííûõ êîîðäèíàò õ, ó, z è âðåìåíè t, ñèììåòðè÷íûå         R 2 = x12 + x 22 + x 32 ). Òàê êàê îäíî èç 2-õ ñîáûòèé, ñâÿçàííûõ
÷åòûðå êîîðäèíàòû: x1 , x 2 , x3 , x 4 . Îäíàêî â îòëè÷èå îò ðàíåå   èíòåðâàëîì, íàõîäèòñÿ â íà÷àëå êîîðäèíàò, òî êâàäðàò èíòåðâàëà
ââåäåííûõ â §8 ïîäîáíûõ êîîðäèíàò, ÷åòâåðòàÿ êîîðäèíàòà              îïðåäåëÿåò êâàäðàò 4-ìåðíîãî ðàäèóñ-âåêòîðà, ïðîâåäåííîãî èç
Ìèíêîâñêîãî õ4 ñâÿçàíà ñî âðåìåíåì èíà÷å, à èìåííî òàê:              íà÷àëà êîîðäèíàò â ìèðîâóþ òî÷êó, ñîîòâåòñòâóþùóþ âòîðîìó
                   õ4=ict.                                  (9.1)    ñîáûòèþ. À ó÷èòûâàÿ èíâàðèàíòíîñòü êâàäðàòà èíòåðâàëà
     Ìíèìîñòü ýòîé êîîðäèíàòû íå èìååò íèêàêîãî ôèçè÷åñêî-           îòíîñèòåëüíî ôîðìóë ïðåîáðàçîâàíèÿ Ëîðåíöà, ìîæíî
ãî ñìûñëà è ââåäåíà äëÿ ñèììåòðèçàöèè ôîðìóë ÑÒÎ.  êîíå÷íûõ         ñôîðìóëèðîâàòü ñëåäóþùóþ òåîðåìó äëÿ 4-ìåðíîãî ìèðà
âûðàæåíèÿõ ìíèìîñòü óñòðàíÿåòñÿ, è ìû ñíîâà ïîëó÷àåì                 Ìèíêîâñêîãî: êâàäðàò ëþáîãî 4-õ-âåêòîðà â ìèðå Ìèíêîâñêîãî
ðåàëüíûå ïðîñòðàíñòâåííûå êîîðäèíàòû è âðåìÿ. Ñëåäóåò                ÿâëÿåòñÿ èíâàðèàíòîì îòíîñèòåëüíî ôîðìóë ïðåîáðàçîâàíèÿ
çàìåòèòü, ÷òî ïåðâîíà÷àëüíî ðÿä ôèçèêîâ è ôèëîñîôîâ                  Ëîðåíöà. Ìû íåîäíîêðàòíî áóäåì ïîëüçîâàòüñÿ ýòîé òåîðåìîé.
âîñïðèíèìàëè ìíèìîñòü ÷åòâåðòîé êîîðäèíàòû íå òàê                        Òåïåðü ïåðåä íàìè ñòîèò çàäà÷à çàïèñàòü óðàâíåíèÿ äâè-
îäíîçíà÷íî. Åñëè ó÷åñòü, ÷òî èìåííî Ìèíêîâñêèé íàçâàë                æåíèÿ â 4-ìåðíîé ôîðìå, ÷åðåç 4-ìåðíûå âåêòîðû, çàêîí
èçó÷àåìóþ íàìè òåîðèþ ñïåöèàëüíîé òåîðèåé îòíîñèòåëüíîñòè,           ïðåîáðàçîâàíèÿ êîìïîíåíò êîòîðûõ íàì èçâåñòåí. Ìû íà÷èíàåì
à ðÿä ó÷åíûõ äåëàëè àêöåíò íà ïîñëåäíåì ñëîâå â íàçâàíèè, òî         “ñòðîèòü” äèíàìèêó ÑÒÎ.
ìîæíî ïîíÿòü, ïî÷åìó ïåðâîíà÷àëüíî íå âñå ó÷åíûå                         Íà÷íåì ñ ïîñòðîåíèÿ 4~õ-âåêòîðà ñêîðîñòè. ×òîáû ïîëó÷èòü
âîñïðèíèìàëè ÑÒÎ êàê ìàòåðèàëèñòè÷åñêîå ó÷åíèå.                      èíâàðèàíòíóþ âåëè÷èíó, íóæíî, ñîãëàñíî îïðåäåëåíèþ ñêîðîñòè,
     Ñîâîêóïíîñòü ÷åòûðåõ êîîðäèíàò xt,, õ2, x3, õ4 îäíîçíà÷íî       ïðèðàùåíèå      4-ìåðíîãî èíâàðèàíòíîãî ðàäèóñ-âåêòîðà
îïðåäåëÿåò ñîáûòèå â 4-ìåðíîì ìèðå ïðîñòðàíñòâà — âðåìåíè.           r
                                                                     R( x1 , x 2 , x 3 , x 4 ) ïîäåëèòü íà ïðîìåæóòîê èíâàðèàíòíîãî âðåìåíè,
Èçìåíåíèå ñîñòîÿíèÿ îáúåêòà, èçìåíåíèå õîòÿ áû îäíîé èç 4-õ
                                                                     â òå÷åíèå êîòîðîãî ïðîèñõîäèëî äâèæåíèå âäîëü ìèðîâîé ëèíèè.
êîîðäèíàò (à õ4 ñâÿçàíà ñî âðåìåíåì è èçìåíÿåòñÿ íåïðåðûâíî)
                                                                     Òàêèì âðåìåíåì ÿâëÿåòñÿ ñîáñòâåííàÿ äëèòåëüíîñòü ïðîöåññà.
ïðèâîäèò ê ïåðåìåùåíèþ ìèðîâîé òî÷êè. Íåïðåðûâíàÿ ïîñëå-
                                                                          Èòàê, 4~õ-âåêòîð ñêîðîñòè ââîäèòñÿ ïî îïðåäåëåíèþ ïðè
äîâàòåëüíîñòü ìèðîâûõ òî÷åê, îïðåäåëÿþùèõ ñîñòîÿíèå îäíîãî
                                                                     ïîìîùè ñëåäóþùåãî ñîîòíîøåíèÿ (â äàëüíåéøåì çàïèñü
è òîãî æå îáúåêòà, îáðàçóåò ìèðîâóþ òðàåêòîðèþ.
                                                                     ïðèðàùåíèé áóäåì âåñòè â äèôôåðåíöèàëüíîé ôîðìå, äëÿ
     Èñïîëüçóÿ îáîçíà÷åíèÿ Ìèíêîâñêîãî, çàïèøåì ôîðìóëû
                                                                     ñîáñòâåííîãî âðåìåíè ââåäåì îáîçíà÷åíèå τ (òàó) ):
Ëîðåíöà è èíòåðâàë:

66                                                                                                                                                            67