Теория относительности. Учебное пособие. Розман Г.А. - 59 стр.

UptoLike

Составители: 

Рубрика: 

116
117
âîçíèêíîâåíèÿ) ìàòåðèè ïðè ýòîì íå ïðîèñõîäèò: íè â îäíîé ÈÑÎ
íåëüçÿ îäíîâðåìåííî óñòðàíèòü è ýëåêòðè÷åñêîå è ìàãíèòíîå
âîçäåéñòâèå. Äåëî â òîì, ÷òî ñóùåñòâóåò åäèíîå ýëåêòðîìàãíèòíîå
ïîëå, íî èñòîðè÷åñêè ñëîæèëîñü òàê, ÷òî åãî ðàçëè÷íûå
ïðîÿâëåíèÿ (â çàâèñèìîñòè îò óñëîâèé íàáëþäåíèÿ, îò âûáîðà
ÈÑÎ) ïîëó÷èëè ñàìîñòîÿòåëüíûå íàçâàíèÿ: ýëåêòðè÷åñêîå
âîçäåéñòâèå (ïðè ýòîì ýëåêòðîìàãíèòíîå ïîëå íàçûâàåòñÿ
ýëåêòðè÷åñêèì), ìàãíèòíîå âîçäåéñòâèå (â ýòîì ñëó÷àå
ýëåêòðîìàãíèòíîå ïîëå íàçûâàåòñÿ ìàãíèòíûì). Ðå÷ü èäåò
ôàêòè÷åñêè î ñòàöèîíàðíûõ èëè ñòàòè÷åñêèõ ïîëÿõ. Èìåííî â
ýòîì ñëó÷àå óðàâíåíèÿ Ìàêñâåëëà ðàñïàäàþòñÿ íà äâå ãðóïïû
óðàâíåíèé, îäíè èç êîòîðûõ îïèñûâàþò ýëåêòðè÷åñêèå
ïðîÿâëåíèÿ ýëåêòðîìàãíèòíîãî ïîëÿ, äðóãèå  ìàãíèòíûå. Â
íåñòàöèîíàðíîì æå ñëó÷àå òàêîå ðàçäåëåíèå óæå ñäåëàòü
íåâîçìîæíî, è ïðè âñÿêîì èçìåíåíèè âî âðåìåíè ýëåêòðè÷åñêîãî
(ìàãíèòíîãî) ïîëÿ âîçáóæäàþòñÿ âèõðè ìàãíèòíîãî
(ýëåêòðè÷åñêîãî) ïîëÿ. Ïîäîáíûé âçàèìîñâÿçàííûé ïðîöåññ
ìîæåò ðàñïðîñòðàíÿòüñÿ â ïðîñòðàíñòâå â âèäå ýëåêòðîìàãíèòíûõ
âîëí. È â ëþáîé ÈÑÎ ìîæíî áóäåò îáíàðóæèòü åäèíîå
ýëåêòðîìàãíèòíîå ïîëå êàê åäèíóþ ìàòåðèàëüíóþ ñðåäó.
Âñå ýòî, â ïðèíöèïå, áûëî èçâåñòíî è äî ñîçäàíèÿ ÑÒÎ (çà
èñêëþ÷åíèåì òîãî, ÷òî ýëåêòðîìàãíèòíîå ïîëå ñ÷èòàëîñü íå
îäíèì èç âèäîâ ìàòåðèè, à îñîáûì ñîñòîÿíèåì ýëåêòðî-
ìàãíèòíîãî ýôèðà). Ãëàâíîå ðàçëè÷èå ðåçóëüòàòîâ ÑÒÎ ïî
ñðàâíåíèþ ñ ôîðìóëàìè äî ðåëÿòèâèñòñêîé ôèçèêè ñîñòîèò â
ðàçëè÷íûõ àíàëèòè÷åñêèõ âûðàæåíèÿõ äëÿ ïðåîáðàçîâàíèé
õàðàêòåðèñòèê ýëåêòðîìàãíèòíîãî ïîëÿ.
 êà÷åñòâå èëëþñòðàöèè îòíîñèòåëüíîñòè äåëåíèÿ åäèíîãî
ýëåêòðîìàãíèòíîãî ïîëÿ íà ýëåêòðè÷åñêîå è ìàãíèòíîå
ðàññìîòðèì ñëåäóþùóþ çàäà÷ó: ïî ïðîâîäíèêó èäåò ïîñòîÿííûé
òîê, íóæíî ðàññìîòðåòü ïîëå ýòîãî òîêà, èñõîäÿ èç äâóõ ÈÑÎ
Ïðîâîäíèê è Ýëåêòðîí, ñâÿçàâ êàæäóþ èç íèõ ñ ñîîòâåò-
ñòâóþùèì îáúåêòîì.
 ÈÑÎ Ïðîâîäíèê êðèñòàëëè÷åñêàÿ ðåøåòêà ïðîâîäíèêà
íåïîäâèæíà, à ñ íåêîòîðîé ñêîðîñòüþ è äâèæóòñÿ ýëåêòðîíû
ïðîâîäèìîñòè. Òàê êàê ïî ïðîâîäíèêó òå÷åò ïîñòîÿííûé òîê, òî
ñêîëüêî ýëåêòðîíîâ çàõîäèò â êàêîé ëèáî ó÷àñòîê ïðîâîäíèêà,
ñòîëüêî æå âûõîäèò, ýòî ñëåäóåò èç îïðåäåëåíèÿ ïîñòîÿííîãî
òîêà. Ïîýòîìó, êàê äî çàìûêàíèÿ öåïè, òàê è ïîñëå â öåëîì ïðî-
âîäíèê îêàçûâàåòñÿ íåéòðàëüíûì. Ìàòåìàòè÷åñêè ýòî ìîæíî
çàïèñàòü òàê:
+
=
ρρ
èëè
+
+
ρρ
=0, ãäå
+
ρ
è
ρ
_  îáúåìíûå
ïëîòíîñòè ïîëîæèòåëüíûõ çàðÿäîâ êðèñòàëëè÷åñêîé ðåøåòêè è
ýëåêòðîíîâ, ñîçäàþùèõ â äàííîé ÈÑÎ ýëåêòðè÷åñêèé òîê ñ
ïëîòíîñòüþ
uj
x
=
ρ
, ïðè÷åì
ρ
= en, çíàê () ó÷èòûâàåò çíàê
çàðÿäà ýëåêòðîíà, n îáúåìíàÿ ïëîòíîñòü ýëåêòðîíîâ.
 ÈÑÎ Ýëåêòðîí ýëåêòðîíû ïðîâîäèìîñòè íåïîäâèæíû,
íî äâèæåòñÿ êðèñòàëëè÷åñêàÿ ðåøåòêà ñî ñêîðîñòüþ (u).  ýòîé
ÈÑÎ èçìåíèòñÿ îáúåìíàÿ ïëîòíîñòü è ïîëîæèòåëüíûõ è
îòðèöàòåëüíûõ çàðÿäîâ ñîãëàñíî ôîðìóëàì, ïîëó÷åííûì âûøå
(16.11):
,
/1
1
22
2
,
cu
c
uj
x
=
+
++
ρρ
ãäå
+
x
j
= 0, òàê êàê ïîëîæèòåëüíûå èîíû â ÈÑÎ Ïðîâîäíèê
íåïîäâèæíû. Ñîîòâåòñòâåííî, ó÷èòûâàÿ, ÷òî
,enuj
x
=
èìååì:
.
/1
22
2
,
cu
c
uj
x
=
ρ
ρ
Ñîñòàâèì âûðàæåíèå
,
/1
222
22
cuc
une
=
+
+
ρρ
÷òî áîëüøå íóëÿ, ò. å. ïðîâîäíèê â ÈÑÎ Ýëåêòðîí ïðèîáðåòàåò
ïîëîæèòåëüíûé çàðÿä. È åñëè â ÈÑÎ Ïðîâîäíèê âîêðóã
ïðîâîäíèêà ñ ïîìîùüþ ïðèáîðîâ (ò.å. îáúåêòèâíî) ìîæíî
îáíàðóæèòü ìàãíèòíîå ïîëå, òî â ÈÑÎ Ýëåêòðîí ïðèáîðû
çàôèêñèðóþò è ýëåêòðè÷åñêîå ïîëå (îò çàðÿæåííîãî ïðîâîäíèêà),
è ìàãíèòíîå ïîëå (îò òîêà, ñâÿçàííîãî ñ äâèæåíèåì èîíîâ ðåøåòêè
â ýòîé ÈÑÎ).
âîçíèêíîâåíèÿ) ìàòåðèè ïðè ýòîì íå ïðîèñõîäèò: íè â îäíîé ÈÑÎ     ñòîëüêî æå “âûõîäèò”, ýòî ñëåäóåò èç îïðåäåëåíèÿ ïîñòîÿííîãî
íåëüçÿ îäíîâðåìåííî óñòðàíèòü è ýëåêòðè÷åñêîå è ìàãíèòíîå         òîêà. Ïîýòîìó, êàê äî çàìûêàíèÿ öåïè, òàê è ïîñëå â öåëîì ïðî-
âîçäåéñòâèå. Äåëî â òîì, ÷òî ñóùåñòâóåò åäèíîå ýëåêòðîìàãíèòíîå   âîäíèê îêàçûâàåòñÿ íåéòðàëüíûì. Ìàòåìàòè÷åñêè ýòî ìîæíî
ïîëå, íî èñòîðè÷åñêè ñëîæèëîñü òàê, ÷òî åãî ðàçëè÷íûå             çàïèñàòü òàê: ρ + = − ρ − èëè ρ + + ρ − =0, ãäå ρ + è ρ _ — îáúåìíûå
ïðîÿâëåíèÿ (â çàâèñèìîñòè îò óñëîâèé íàáëþäåíèÿ, îò âûáîðà        ïëîòíîñòè ïîëîæèòåëüíûõ çàðÿäîâ êðèñòàëëè÷åñêîé ðåøåòêè è
ÈÑÎ) ïîëó÷èëè ñàìîñòîÿòåëüíûå íàçâàíèÿ: ýëåêòðè÷åñêîå             ýëåêòðîíîâ, ñîçäàþùèõ â äàííîé ÈÑÎ ýëåêòðè÷åñêèé òîê ñ
âîçäåéñòâèå (ïðè ýòîì ýëåêòðîìàãíèòíîå ïîëå íàçûâàåòñÿ
ýëåêòðè÷åñêèì), ìàãíèòíîå âîçäåéñòâèå (â ýòîì ñëó÷àå              ïëîòíîñòüþ j x− = ρ − u , ïðè÷åì ρ − = —en, çíàê (—) ó÷èòûâàåò çíàê
ýëåêòðîìàãíèòíîå ïîëå íàçûâàåòñÿ ìàãíèòíûì). Ðå÷ü èäåò            çàðÿäà ýëåêòðîíà, n— îáúåìíàÿ ïëîòíîñòü ýëåêòðîíîâ.
ôàêòè÷åñêè î ñòàöèîíàðíûõ èëè ñòàòè÷åñêèõ ïîëÿõ. Èìåííî â               ÈÑÎ “Ýëåêòðîí” ýëåêòðîíû ïðîâîäèìîñòè íåïîäâèæíû,
ýòîì ñëó÷àå óðàâíåíèÿ Ìàêñâåëëà ðàñïàäàþòñÿ íà äâå ãðóïïû         íî äâèæåòñÿ êðèñòàëëè÷åñêàÿ ðåøåòêà ñî ñêîðîñòüþ (—u).  ýòîé
óðàâíåíèé, îäíè èç êîòîðûõ îïèñûâàþò ýëåêòðè÷åñêèå                ÈÑÎ èçìåíèòñÿ îáúåìíàÿ ïëîòíîñòü è ïîëîæèòåëüíûõ è
ïðîÿâëåíèÿ ýëåêòðîìàãíèòíîãî ïîëÿ, äðóãèå — ìàãíèòíûå.           îòðèöàòåëüíûõ çàðÿäîâ ñîãëàñíî ôîðìóëàì, ïîëó÷åííûì âûøå
íåñòàöèîíàðíîì æå ñëó÷àå òàêîå ðàçäåëåíèå óæå ñäåëàòü             (16.11):
íåâîçìîæíî, è ïðè âñÿêîì èçìåíåíèè âî âðåìåíè ýëåêòðè÷åñêîãî
(ìàãíèòíîãî) ïîëÿ âîçáóæäàþòñÿ âèõðè ìàãíèòíîãî                                                      j +u      1
                                                                                       ρ +, =  ρ + − x2  ⋅             ,
(ýëåêòðè÷åñêîãî) ïîëÿ. Ïîäîáíûé âçàèìîñâÿçàííûé ïðîöåññ                                                   
                                                                                                     c     1 − u2 / c2
ìîæåò ðàñïðîñòðàíÿòüñÿ â ïðîñòðàíñòâå â âèäå ýëåêòðîìàãíèòíûõ
âîëí. È â ëþáîé ÈÑÎ ìîæíî áóäåò îáíàðóæèòü åäèíîå                 ãäå j x+ = 0,   òàê êàê ïîëîæèòåëüíûå èîíû â ÈÑÎ “Ïðîâîäíèê”
ýëåêòðîìàãíèòíîå ïîëå êàê åäèíóþ ìàòåðèàëüíóþ ñðåäó.              íåïîäâèæíû. Ñîîòâåòñòâåííî, ó÷èòûâàÿ, ÷òî j x− = − enu, èìååì:
     Âñå ýòî, â ïðèíöèïå, áûëî èçâåñòíî è äî ñîçäàíèÿ ÑÒÎ (çà
èñêëþ÷åíèåì òîãî, ÷òî ýëåêòðîìàãíèòíîå ïîëå ñ÷èòàëîñü íå                                                        j x− u
îäíèì èç âèäîâ ìàòåðèè, à îñîáûì ñîñòîÿíèåì ýëåêòðî-                                                     ρ− −
                                                                                              ρ −, =                c2   .
ìàãíèòíîãî ýôèðà). Ãëàâíîå ðàçëè÷èå ðåçóëüòàòîâ ÑÒÎ ïî
                                                                                                         1 − u / c2
                                                                                                                2
ñðàâíåíèþ ñ ôîðìóëàìè äî ðåëÿòèâèñòñêîé ôèçèêè ñîñòîèò â
ðàçëè÷íûõ àíàëèòè÷åñêèõ âûðàæåíèÿõ äëÿ ïðåîáðàçîâàíèé                   Ñîñòàâèì âûðàæåíèå
õàðàêòåðèñòèê ýëåêòðîìàãíèòíîãî ïîëÿ.
                                                                                                            e2n ⋅ u 2
      êà÷åñòâå èëëþñòðàöèè îòíîñèòåëüíîñòè äåëåíèÿ åäèíîãî                              ρ +′ + ρ −′ =                       ,
ýëåêòðîìàãíèòíîãî ïîëÿ íà ýëåêòðè÷åñêîå è ìàãíèòíîå                                                      c2 1 − u2 / c2
ðàññìîòðèì ñëåäóþùóþ çàäà÷ó: ïî ïðîâîäíèêó èäåò ïîñòîÿííûé        ÷òî áîëüøå íóëÿ, ò. å. ïðîâîäíèê â ÈÑÎ “Ýëåêòðîí” ïðèîáðåòàåò
òîê, íóæíî ðàññìîòðåòü ïîëå ýòîãî òîêà, èñõîäÿ èç äâóõ ÈÑÎ        ïîëîæèòåëüíûé çàðÿä. È åñëè â ÈÑÎ “Ïðîâîäíèê” âîêðóã
“Ïðîâîäíèê” è “Ýëåêòðîí”, ñâÿçàâ êàæäóþ èç íèõ ñ ñîîòâåò-         ïðîâîäíèêà ñ ïîìîùüþ ïðèáîðîâ (ò.å. îáúåêòèâíî) ìîæíî
ñòâóþùèì îáúåêòîì.                                                îáíàðóæèòü ìàãíèòíîå ïîëå, òî â ÈÑÎ “Ýëåêòðîí” ïðèáîðû
      ÈÑÎ “Ïðîâîäíèê” êðèñòàëëè÷åñêàÿ ðåøåòêà ïðîâîäíèêà         çàôèêñèðóþò è ýëåêòðè÷åñêîå ïîëå (îò çàðÿæåííîãî ïðîâîäíèêà),
íåïîäâèæíà, à ñ íåêîòîðîé ñêîðîñòüþ è äâèæóòñÿ ýëåêòðîíû          è ìàãíèòíîå ïîëå (îò òîêà, ñâÿçàííîãî ñ äâèæåíèåì èîíîâ ðåøåòêè
ïðîâîäèìîñòè. Òàê êàê ïî ïðîâîäíèêó òå÷åò ïîñòîÿííûé òîê, òî      â ýòîé ÈÑÎ).
ñêîëüêî ýëåêòðîíî⠓çàõîäèò” â êàêîé ëèáî ó÷àñòîê ïðîâîäíèêà,
116                                                                                                                               117