ВУЗ:
Составители:
Рубрика:
PROSTRANSTW WYTEKAET, ^TO H s (Rn)]0 S 0 (Rn).
f) pROSTRANSTWO H s (Rn)]0 DUALXNOE K PROSTRANSTWU H s(Rn) IZO
, , -
METRI^ESKI IZOMORFNO PROSTRANSTWU H ;s (Rn) TO ESTX H s (Rn)]0 =
,
H ;s (Rn).
dOKAZATELXSTWO. pUSTX u 2 H s (Rn)]0 . pOSKOLXKU H s (Rn)]0
S 0 (Rn), TO u 2 S 0 (Rn).
rASSMOTRIM MAKSIMUM WYRAVENIQ
((1 + j j2);s=2u^j )
KOGDA PROBEGAET MNOVESTWO fk kL 6 1g. |TOT MAKSIMUM RAWEN
2
k(1 + j j2);s=2 u^kL = kuk;s :
2
tAK KAK (1+ j j2)s=2 2 M (Rn), TO MOVNO S^ITATX, ^TO = (1+ j j2)s=2'^ ,
GDE ' 2 S (Rn), PRI^EM USLOWIE k kL 6 1 \KWIWALENTNO k'ks 6 1.
2
sLEDOWATELXNO, ISPOLXZUQ TEOREMU pARSEWALQ, POLU^IM
((1 + j j2);s=2u^j ) = ((1 + j j2);s=2u^j(1 + j j2)s=2'^ ) = (^uj'^ ) = (uj'):
dALEE IMEEM:
j(uj')j 6 kukH s(Rn)]0 k'ks 6 kukH s(Rn)]0 :
oTKUDA (1 + j j2);s=2 u^ 2 L2(Rn), TO ESTX u 2 H ;s (Rn) I
kuk;s 6 kukH s(Rn)]0 : ()
oBRATNO, PUSTX u 2 H ;s (Rn). tAK KAK kukH ;s(Rn)]0 = kmax 'ks61
j(uj')j, TO
DOSTATO^NO OCENITX WYRAVENIE
((1 + j j2);s=2u^j(1 + j j2)s=2'^ )
PRI USLOWII, ^TO ' 2 S (Rn) k'ks 6 1.
iMEEM:
j(uj')j = j((1 + j j2);s=2 u^j(1 + j j2)s=2'^ )j 6
k(1 + j j2);s=2u^kL k(1 + j j2)s=2'^kL = kuk;s k'ks
2 2
OTKUDA u 2 H s (Rn)]0 I KROME TOGO
kukH s(Rn)]0 6 kuk;s : ()
14
Страницы
- « первая
- ‹ предыдущая
- …
- 12
- 13
- 14
- 15
- 16
- …
- следующая ›
- последняя »
