ВУЗ:
Составители:
Рубрика:
KOE, ^TO SUVENIE u W SOWPADAET (PO^TI WS@DU) S u. u NAZYWA@T m-PRODOLVENIEM FUNKCII u 2 H m () NA Rn, GDE u 2 H m(Rn). pOZVE UWIDIM, ^TO POLUPROSTRANSTWO OBLADAET SWOJSTWOM m-PRO- DOLVENIQ DLQ L@BOGO CELOGO POLOVITELXNOGO m. tEOREMA. pUSTX OTKRYTOE MNOVESTWO OBLADA@]EE SWOJST | , - WOM m PRODOLVENIQ tOGDA PROSTRANSTWO H m () NEPRERYWNO WKLA - . - DYWAETSQ W PROSTRANSTWO Bk () ESLI m > n=2 + k GDE Bk () ESTX , , MNOVESTWO FUNKCIJ k RAZ NEPRERYWNO DIFFERENCIRUEMYH NA , . dOKAZATELXSTWO. mNOVESTWO Bk () SNABVA@T NORMOJ pk (u) := sup sup jDu(x)j. pUSTX u 2 H m () I ESTX m-PRODOLVENIE DLQ . x2 jaj6k tOGDA u ESTX \LEMENT IZ B0k (Rn) I, SLEDOWATELXNO, SUVENIE u ESTX \LEMENT IZ Bk (). nO \TO SUVENIE ESTX NI^TO INOE, KAK u. wLOVENIE H m () W Bk () ESTX KOMPOZICIQ TREH NEPRERYWNYH OTO- BRAVENIJ: 1) OTOBRAVENIQ , PREOBRAZU@]EGO NEPRERYWNO H m () W H m(Rn) 2) ESTESTWENNOGO NEPRERYWNOGO WLOVENIQ H m (Rn) W B0k (Rn) 3) NEPRERYWNOGO OTOBRAVENIQ | SUVENIQ u ! uj , PREOBRAZU@]EGO B0 (Rn) W Bk (). k pO\TOMU H m () Bk (). 40) kOMPAKTNOE WLOVENIE. a) tEOREMA. pUSTX K | KOMPAKT IZ Rn, A r I s | DWA DEJST- WITELXNYH ^ISLA TAKIH, ^TO r < s. tOGDA ESTESTWENNOE WLOVENIE H s (Rn) \ EK0 (Rn) W H r (Rn) QWLQETSQ KOMPAKTNYM. zDESX H s (Rn) \ EK0 (Rn) := fu 2 H s(Rn)jsupp u K g | MNOVESTWO FUNKCIJ, SNABVENNOE TOPOLOGIEJ, INDUCIROWANNOJ IZ H s (Rn). dOKAVEM PREDWARITELXNO LEMMU : lEMMA. dLQ WSQKOGO DEJSTWITELXNOGO ^ISLA s I L@BYH x I y IZ Rn IMEET MESTO NERAWENSTWO : (1 + jx + yj2)s 6 (1 + jxj)2jsj(1 + jyj2)s: dOKAZATELXSTWO. dOSTATO^NO EE DOKAZATX DLQ s = 1. rASSMOT- RIM SLU^AJ, KOGDA s = +1. iMEEM: 1+jx+yj2 = 1+jxj2 +2xy +jyj2 6 1+jxj2 +2jxjjyj+jyj2 6 (1+jxj)2(1+jyj2) IBO 2jyj 6 2jyj2 + jxjjyj2 + 2. 18
Страницы
- « первая
- ‹ предыдущая
- …
- 16
- 17
- 18
- 19
- 20
- …
- следующая ›
- последняя »