ВУЗ:
Составители:
Рубрика:
tAK KAK EDINI^NYJ AR IZ L2(I H01()) QWLQETSQ SEKWENCIALXNO KOM- PAKTNYM PO OSLABLENNOJ TOPOLOGII, TO POSLEDOWATELXNOSTX (um)m2N SHODITSQ K u(t x) PO OSLABLENNOJ TOPOLOGII L2(I H01()), I NET NEOB- HODIMOSTI IZ NEE IZWLEKATX PODPOSLEDOWATELXNOSTX. f ) sHODIMOSTX (um )m2N K u PO NORMIROWANNOJ TOPOLOGII PROSTRANSTWA L2(I H01()). wYPIEM SNA^ALA SOOTNOENIQ \NERGII, USTANOWLENNYE RANEE, DLQ um I u: (u0m(t)jum(t)) + kum (t)k2H () = (f (t)jum(t)) t 2 T 1 0 (u0 (t)ju(t)) + ku(t)k2H01() = (f (t)ju(t)) t 2 T: tAK KAK (um)m2N RSHODITSQ K u(t x) PO OSLABLENNOJ R TOPOLOGII L (I H0 ()), TO 0 (f (t)jum(t))dt SHODITSQ K 0 (f (t)ju(t))dt. w SAMOM 2 1 T T DELE, SU]ESTWUET g 2 L2(I H01()) TAKOE, ^TO ;g = f (t) NO TOGDA ZT ZT ZT (f ju)dt = ; (gju)dt = (gju)H01()dt: 0 0 0 a TOGDA IMEEM: ZT ZT lim m!1 f(u0m(t)jum(t))+kum(t)kH gdt = f(u0(t)ju(t))+ku(t)kH gdt 2 1 0 () 2 1 0 () 0 0 TO ESTX SHODIMOSTX \NERGII. rASSMOTRIM TEPERX WYRAVENIE (u0m(t) ; u0 (t)jum(t) ; u(t)) + kum(t) ; u(t)k2H01() = = (u0m(t)jum(t)) ; (u0m (t)ju(t)) ; (u0(t)jum(t))+(u0(t)ju(t))+ kum(t)k2H01() ; ;2Re(u(t)jum(t))H01() + ku(t)k2H01(): iSPOLXZUQ SHODIMOSTX \NERGII, IMEEM: ZT lim Re m!1 f(u0m(t) ; u0(t)jum(t) ; u(t)) + kum(t) ; u(t)kH gdt = 0 2 1 0 () 0 18
Страницы
- « первая
- ‹ предыдущая
- …
- 16
- 17
- 18
- 19
- 20
- …
- следующая ›
- последняя »