ВУЗ:
Составители:
Рубрика:
tAK KAK EDINI^NYJ AR IZ L2(I H01()) QWLQETSQ SEKWENCIALXNO KOM-
PAKTNYM PO OSLABLENNOJ TOPOLOGII, TO POSLEDOWATELXNOSTX (um)m2N
SHODITSQ K u(t x) PO OSLABLENNOJ TOPOLOGII L2(I H01()), I NET NEOB-
HODIMOSTI IZ NEE IZWLEKATX PODPOSLEDOWATELXNOSTX.
f ) sHODIMOSTX (um )m2N K u PO NORMIROWANNOJ TOPOLOGII
PROSTRANSTWA L2(I H01()).
wYPIEM SNA^ALA SOOTNOENIQ \NERGII, USTANOWLENNYE RANEE, DLQ
um I u:
(u0m(t)jum(t)) + kum (t)k2H () = (f (t)jum(t)) t 2 T
1
0
(u0 (t)ju(t)) + ku(t)k2H01() = (f (t)ju(t)) t 2 T:
tAK KAK (um)m2N RSHODITSQ K u(t x) PO OSLABLENNOJ R TOPOLOGII
L (I H0 ()), TO 0 (f (t)jum(t))dt SHODITSQ K 0 (f (t)ju(t))dt. w SAMOM
2 1 T T
DELE, SU]ESTWUET g 2 L2(I H01()) TAKOE, ^TO ;g = f (t) NO TOGDA
ZT ZT ZT
(f ju)dt = ; (gju)dt = (gju)H01()dt:
0 0 0
a TOGDA IMEEM:
ZT ZT
lim
m!1
f(u0m(t)jum(t))+kum(t)kH gdt = f(u0(t)ju(t))+ku(t)kH gdt
2
1
0 ()
2
1
0 ()
0 0
TO ESTX SHODIMOSTX \NERGII.
rASSMOTRIM TEPERX WYRAVENIE
(u0m(t) ; u0 (t)jum(t) ; u(t)) + kum(t) ; u(t)k2H01() =
= (u0m(t)jum(t)) ; (u0m (t)ju(t)) ; (u0(t)jum(t))+(u0(t)ju(t))+ kum(t)k2H01() ;
;2Re(u(t)jum(t))H01() + ku(t)k2H01():
iSPOLXZUQ SHODIMOSTX \NERGII, IMEEM:
ZT
lim Re
m!1
f(u0m(t) ; u0(t)jum(t) ; u(t)) + kum(t) ; u(t)kH gdt = 0
2
1
0 ()
0
18
Страницы
- « первая
- ‹ предыдущая
- …
- 16
- 17
- 18
- 19
- 20
- …
- следующая ›
- последняя »
