Математическая логика и теория алгоритмов. Самохин А.В. - 101 стр.

UptoLike

Составители: 

Рубрика: 

§1. æÏÒÍÕÌÙ É ÉÎÔÅÒÐÒÅÔÁÃÉÉ 101
ÐÕÔÁÎÉÃÁ).
ïÐÒÅÄÅÌÉÍ ÐÏÎÑÔÉÅ ÔÅÒÍÁ ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÙ. ôÅÒÍÏÍ ÎÁÚÙ×ÁÅÔÓÑ ÐÏ-
ÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÐÅÒÅÍÅÎÎÙÈ, ÚÁÐÑÔÙÈ, ÓËÏÂÏË É ÓÉÍ×ÏÌÏ× ÓÉÇÎÁÔÕÒÙ, ËÏ-
ÔÏÒÕÀ ÍÏÖÎÏ ÐÏÓÔÒÏÉÔØ ÐÏ ÓÌÅÄÕÀÝÉÍ ÐÒÁ×ÉÌÁÍ:
éÎÄÉ×ÉÄÎÁÑ ÐÅÒÅÍÅÎÎÁÑ ÅÓÔØ ÔÅÒÍ.
æÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ 0 ÅÓÔØ ÔÅÒÍ.
åÓÌÉ t
1
, . . . , t
k
¡ ÔÅÒÍÙ, Á f ¡ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ
k > 0, ÔÏ f(t
1
, . . . , t
k
) ÅÓÔØ ÔÅÒÍ.
÷ ÐÒÉÎÃÉÐÅ ÍÏÖÎÏ ÂÙÌÏ ÎÅ ×ÙÄÅÌÑÔØ ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ ×ÁÌÅÎÔ-
ÎÏÓÔÉ 0 (ËÏÔÏÒÙÅ ÔÁËÖÅ ÎÁÚÙ×ÁÀÔ ËÏÎÓÔÁÎÔÁÍÉ) × ÏÔÄÅÌØÎÕÀ ÇÒÕÐÐÕ, ÎÏ
ÔÏÇÄÁ ÂÙ ÐÏÓÌÅ ÎÉÈ ÐÒÉÛÌÏÓØ ÐÉÓÁÔØ ÓËÏÂËÉ (ËÁË ÜÔÏ ÄÅÌÁÅÔÓÑ × ÐÒÏÇÒÁÍÍÁÈ
ÎÁ ÑÚÙËÅ óÉ).
åÓÌÉ A ¡ ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ k, Á t
1
, . . . , t
k
¡ ÔÅÒÍÙ, ÔÏ
×ÙÒÁÖÅÎÉÅ A(t
1
, . . . , t
k
) ÓÞÉÔÁÅÔÓÑ ÁÔÏÍÁÒÎÏÊ ÆÏÒÍÕÌÏÊ. ëÒÏÍÅ ÔÏÇÏ, ÌÀÂÏÊ
ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ 0 ÓÞÉÔÁÅÔÓÑ ÁÔÏÍÁÒÎÏÊ ÆÏÒÍÕÌÏÊ.
æÏÒÍÕÌÙ ÓÔÒÏÑÔÓÑ ÐÏ ÔÁËÉÍ ÐÒÁ×ÉÌÁÍ:
áÔÏÍÁÒÎÁÑ ÆÏÒÍÕÌÁ ÅÓÔØ ÆÏÒÍÕÌÁ.
åÓÌÉ ϕ ¡ ÆÏÒÍÕÌÁ, ÔÏ ¬ϕ ¡ ÆÏÒÍÕÌÁ.
åÓÌÉ ϕ É ψ ¡ ÆÏÒÍÕÌÙ, ÔÏ ×ÙÒÁÖÅÎÉÑ (ϕψ), (ϕ ψ), (ϕ ψ) ÔÁËÖÅ
Ñ×ÌÑÀÔÓÑ ÆÏÒÍÕÌÁÍÉ.
åÓÌÉ ϕ ÅÓÔØ ÆÏÒÍÕÌÁ, Á ξ ¡ ÉÎÄÉ×ÉÄÎÁÑ ÐÅÒÅÍÅÎÎÁÑ, ÔÏ ×ÙÒÁÖÅÎÉÑ
ξ ϕ É ξ ϕ Ñ×ÌÑÀÔÓÑ ÆÏÒÍÕÌÁÍÉ.
÷Ï ÍÎÏÇÉÈ ÓÌÕÞÁÑÈ × ÓÉÇÎÁÔÕÒÕ ×ÈÏÄÉÔ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ
=, ÎÁÚÙ×ÁÅÍÙÊ ÒÁ×ÅÎÓÔ×ÏÍ. ðÏ ÔÒÁÄÉÃÉÉ ×ÍÅÓÔÏ = (t
1
, t
2
) ÐÉÛÕÔ (t
1
= t
2
).
éÔÁË, ÐÏÎÑÔÉÅ ÆÏÒÍÕÌÙ × ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÅ ÐÏÌÎÏÓÔØÀ ÏÐÒÅÄÅÌÅÎÏ. éÎÏ-
ÇÄÁ ÔÁËÉÅ ÆÏÒÍÕÌÙ ÎÁÚÙ×ÁÀÔ ÆÏÒÍÕÌÁÍÉ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÄÁÎÎÏÊ ÓÉÇÎÁÔÕ-
ÒÙ, ÉÌÉ ÆÏÒÍÕÌÁÍÉ ÑÚÙËÁ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ Ó ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÏÊ.
îÁÛ ÓÌÅÄÕÀÝÉÊ ÛÁÇ ¡ ÏÐÒÅÄÅÌÅÎÉÅ ÉÎÔÅÒÐÒÅÔÁÃÉÉ ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÙ.
ðÕÓÔØ ÆÉËÓÉÒÏ×ÁÎÁ ÎÅËÏÔÏÒÁÑ ÓÉÇÎÁÔÕÒÁ σ. þÔÏÂÙ ÚÁÄÁÔØ ÉÎÔÅÒÐÒÅÔÁÃÉÀ
ÓÉÇÎÁÔÕÒÙ σ, ÎÅÏÂÈÏÄÉÍÏ:
ÕËÁÚÁÔØ ÎÅËÏÔÏÒÏÅ ÎÅÐÕÓÔÏÅ ÍÎÏÖÅÓÔ×Ï M, ÎÁÚÙ×ÁÅÍÏÅ ÎÏÓÉÔÅÌÅÍ ÉÎ-
ÔÅÒÐÒÅÔÁÃÉÉ;
ÄÌÑ ËÁÖÄÏÇÏ ÐÒÅÄÉËÁÔÎÏÇÏ ÓÉÍ×ÏÌÁ ÓÉÇÎÁÔÕÒÙ σ ÕËÁÚÁÔØ ÐÒÅÄÉËÁÔ Ó
ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÍ ÞÉÓÌÏÍ ÁÒÇÕÍÅÎÔÏ×, ÏÐÒÅÄÅ̾ÎÎÙÊ ÎÁ ÍÎÏÖÅÓÔ×Å M
(ËÁË ÍÙ ÕÖÅ ÇÏ×ÏÒÉÌÉ, 0-ÍÅÓÔÎÙÍ ÐÒÅÄÉËÁÔÎÙÍ ÓÉÍ×ÏÌÁÍ ÓÔÁ×ÉÔÓÑ ×
ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÌÉÂÏ é, ÌÉÂÏ ì);
ÄÌÑ ËÁÖÄÏÇÏ ÆÕÎËÃÉÏÎÁÌØÎÏÇÏ ÓÉÍ×ÏÌÁ ÓÉÇÎÁÔÕÒÙ σ ÕËÁÚÁÔØ ÆÕÎË-
ÃÉÀ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÇÏ ÞÉÓÌÁ ÁÒÇÕÍÅÎÔÏ× Ó ÁÒÇÕÍÅÎÔÁÍÉ É ÚÎÁÞÅÎÉÑ-
ÍÉ ÉÚ M (× ÞÁÓÔÎÏÓÔÉ, ÄÌÑ 0-ÍÅÓÔÎÙÈ ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÓÉÍ×ÏÌÏ× ÎÁÄÏ
§1. æÏÒÍÕÌÙ É ÉÎÔÅÒÐÒÅÔÁÃÉÉ                                             101

ÐÕÔÁÎÉÃÁ).
   ïÐÒÅÄÅÌÉÍ ÐÏÎÑÔÉÅ ÔÅÒÍÁ ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÙ. ôÅÒÍÏÍ ÎÁÚÙ×ÁÅÔÓÑ ÐÏ-
ÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÐÅÒÅÍÅÎÎÙÈ, ÚÁÐÑÔÙÈ, ÓËÏÂÏË É ÓÉÍ×ÏÌÏ× ÓÉÇÎÁÔÕÒÙ, ËÏ-
ÔÏÒÕÀ ÍÏÖÎÏ ÐÏÓÔÒÏÉÔØ ÐÏ ÓÌÅÄÕÀÝÉÍ ÐÒÁ×ÉÌÁÍ:
    • éÎÄÉ×ÉÄÎÁÑ ÐÅÒÅÍÅÎÎÁÑ ÅÓÔØ ÔÅÒÍ.
    • æÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ 0 ÅÓÔØ ÔÅÒÍ.
    • åÓÌÉ t1 , . . . , tk ¡ ÔÅÒÍÙ, Á f ¡ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ
      k > 0, ÔÏ f (t1, . . . , tk ) ÅÓÔØ ÔÅÒÍ.
   ÷ ÐÒÉÎÃÉÐÅ ÍÏÖÎÏ ÂÙÌÏ ÎÅ ×ÙÄÅÌÑÔØ ÆÕÎËÃÉÏÎÁÌØÎÙÅ ÓÉÍ×ÏÌÙ ×ÁÌÅÎÔ-
ÎÏÓÔÉ 0 (ËÏÔÏÒÙÅ ÔÁËÖÅ ÎÁÚÙ×ÁÀÔ ËÏÎÓÔÁÎÔÁÍÉ) × ÏÔÄÅÌØÎÕÀ ÇÒÕÐÐÕ, ÎÏ
ÔÏÇÄÁ ÂÙ ÐÏÓÌÅ ÎÉÈ ÐÒÉÛÌÏÓØ ÐÉÓÁÔØ ÓËÏÂËÉ (ËÁË ÜÔÏ ÄÅÌÁÅÔÓÑ × ÐÒÏÇÒÁÍÍÁÈ
ÎÁ ÑÚÙËÅ óÉ).
   åÓÌÉ A ¡ ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ k, Á t1 , . . . , tk ¡ ÔÅÒÍÙ, ÔÏ
×ÙÒÁÖÅÎÉÅ A(t1, . . . , tk ) ÓÞÉÔÁÅÔÓÑ ÁÔÏÍÁÒÎÏÊ ÆÏÒÍÕÌÏÊ. ëÒÏÍÅ ÔÏÇÏ, ÌÀÂÏÊ
ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ ×ÁÌÅÎÔÎÏÓÔÉ 0 ÓÞÉÔÁÅÔÓÑ ÁÔÏÍÁÒÎÏÊ ÆÏÒÍÕÌÏÊ.
   æÏÒÍÕÌÙ ÓÔÒÏÑÔÓÑ ÐÏ ÔÁËÉÍ ÐÒÁ×ÉÌÁÍ:
    • áÔÏÍÁÒÎÁÑ ÆÏÒÍÕÌÁ ÅÓÔØ ÆÏÒÍÕÌÁ.
    • åÓÌÉ ϕ ¡ ÆÏÒÍÕÌÁ, ÔÏ ¬ϕ ¡ ÆÏÒÍÕÌÁ.
    • åÓÌÉ ϕ É ψ ¡ ÆÏÒÍÕÌÙ, ÔÏ ×ÙÒÁÖÅÎÉÑ (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) ÔÁËÖÅ
      Ñ×ÌÑÀÔÓÑ ÆÏÒÍÕÌÁÍÉ.
    • åÓÌÉ ϕ ÅÓÔØ ÆÏÒÍÕÌÁ, Á ξ ¡ ÉÎÄÉ×ÉÄÎÁÑ ÐÅÒÅÍÅÎÎÁÑ, ÔÏ ×ÙÒÁÖÅÎÉÑ
      ∀ξ ϕ É ∃ξ ϕ Ñ×ÌÑÀÔÓÑ ÆÏÒÍÕÌÁÍÉ.
   ÷Ï ÍÎÏÇÉÈ ÓÌÕÞÁÑÈ × ÓÉÇÎÁÔÕÒÕ ×ÈÏÄÉÔ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ
=, ÎÁÚÙ×ÁÅÍÙÊ ÒÁ×ÅÎÓÔ×ÏÍ. ðÏ ÔÒÁÄÉÃÉÉ ×ÍÅÓÔÏ = (t1, t2 ) ÐÉÛÕÔ (t1 = t2 ).
   éÔÁË, ÐÏÎÑÔÉÅ ÆÏÒÍÕÌÙ × ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÅ ÐÏÌÎÏÓÔØÀ ÏÐÒÅÄÅÌÅÎÏ. éÎÏ-
ÇÄÁ ÔÁËÉÅ ÆÏÒÍÕÌÙ ÎÁÚÙ×ÁÀÔ ÆÏÒÍÕÌÁÍÉ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÄÁÎÎÏÊ ÓÉÇÎÁÔÕ-
ÒÙ, ÉÌÉ ÆÏÒÍÕÌÁÍÉ ÑÚÙËÁ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ Ó ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÏÊ.
   îÁÛ ÓÌÅÄÕÀÝÉÊ ÛÁÇ ¡ ÏÐÒÅÄÅÌÅÎÉÅ ÉÎÔÅÒÐÒÅÔÁÃÉÉ ÄÁÎÎÏÊ ÓÉÇÎÁÔÕÒÙ.
ðÕÓÔØ ÆÉËÓÉÒÏ×ÁÎÁ ÎÅËÏÔÏÒÁÑ ÓÉÇÎÁÔÕÒÁ σ. þÔÏÂÙ ÚÁÄÁÔØ ÉÎÔÅÒÐÒÅÔÁÃÉÀ
ÓÉÇÎÁÔÕÒÙ σ, ÎÅÏÂÈÏÄÉÍÏ:
    • ÕËÁÚÁÔØ ÎÅËÏÔÏÒÏÅ ÎÅÐÕÓÔÏÅ ÍÎÏÖÅÓÔ×Ï M, ÎÁÚÙ×ÁÅÍÏÅ ÎÏÓÉÔÅÌÅÍ ÉÎ-
      ÔÅÒÐÒÅÔÁÃÉÉ;
    • ÄÌÑ ËÁÖÄÏÇÏ ÐÒÅÄÉËÁÔÎÏÇÏ ÓÉÍ×ÏÌÁ ÓÉÇÎÁÔÕÒÙ σ ÕËÁÚÁÔØ ÐÒÅÄÉËÁÔ Ó
      ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÍ ÞÉÓÌÏÍ ÁÒÇÕÍÅÎÔÏ×, ÏÐÒÅÄÅ̾ÎÎÙÊ ÎÁ ÍÎÏÖÅÓÔ×Å M
      (ËÁË ÍÙ ÕÖÅ ÇÏ×ÏÒÉÌÉ, 0-ÍÅÓÔÎÙÍ ÐÒÅÄÉËÁÔÎÙÍ ÓÉÍ×ÏÌÁÍ ÓÔÁ×ÉÔÓÑ ×
      ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÌÉÂÏ é, ÌÉÂÏ ì);
    • ÄÌÑ ËÁÖÄÏÇÏ ÆÕÎËÃÉÏÎÁÌØÎÏÇÏ ÓÉÍ×ÏÌÁ ÓÉÇÎÁÔÕÒÙ σ ÕËÁÚÁÔØ ÆÕÎË-
      ÃÉÀ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÇÏ ÞÉÓÌÁ ÁÒÇÕÍÅÎÔÏ× Ó ÁÒÇÕÍÅÎÔÁÍÉ É ÚÎÁÞÅÎÉÑ-
      ÍÉ ÉÚ M (× ÞÁÓÔÎÏÓÔÉ, ÄÌÑ 0-ÍÅÓÔÎÙÈ ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÓÉÍ×ÏÌÏ× ÎÁÄÏ