Математическая логика и теория алгоритмов. Самохин А.В. - 102 стр.

UptoLike

Составители: 

Рубрика: 

102 çÌÁ×Á V. ñÚÙËÉ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ
ÕËÁÚÁÔØ ÜÌÅÍÅÎÔ ÍÎÏÖÅÓÔ×Á M, Ó ÎÉÍÉ ÓÏÐÏÓÔÁ×ÌÑÅÍÙÊ).
åÓÌÉ ÓÉÇÎÁÔÕÒÁ ×ËÌÀÞÁÅÔ × ÓÅÂÑ ÓÉÍ×ÏÌ ÒÁ×ÅÎÓÔ×Á, ÔÏ ÓÒÅÄÉ Å¾ ÉÎÔÅÒÐÒÅ-
ÔÁÃÉÊ ×ÙÄÅÌÑÀÔ ÎÏÒÍÁÌØÎÙÅ ÉÎÔÅÒÐÒÅÔÁÃÉÉ, × ËÏÔÏÒÙÈ ÓÉÍ×ÏÌ ÒÁ×ÅÎÓÔ×Á
ÉÎÔÅÒÐÒÅÔÉÒÕÅÔÓÑ ËÁË ÓÏ×ÐÁÄÅÎÉÅ ÜÌÅÍÅÎÔÏ× ÍÎÏÖÅÓÔ×Á M.
ðÒÉ×ÅÄ¾Í ÎÅÓËÏÌØËÏ ÐÒÉÍÅÒÏ× ÓÉÇÎÁÔÕÒ, ÉÓÐÏÌØÚÕÅÍÙÈ × ÒÁÚÌÉÞÎÙÈ ÔÅ-
ÏÒÉÑÈ.
óÉÇÎÁÔÕÒÁ ÔÅÏÒÉÉ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ× ×ËÌÀÞÁÅÔ × ÓÅÂÑ Ä×Á Ä×Õ-
ÍÅÓÔÎÙÈ ÐÒÅÄÉËÁÔÎÙÈ ÓÉÍ×ÏÌÁ (ÒÁ×ÅÎÓÔ×Ï É ÐÏÒÑÄÏË) É ÎÅ ÉÍÅÅÔ ÆÕÎËÃÉÏ-
ÎÁÌØÎÙÈ ÓÉÍ×ÏÌÏ×. úÄÅÓØ ÔÁËÖÅ ×ÍÅÓÔÏ 6 (x, y) ÐÏ ÔÒÁÄÉÃÉÉ ÐÉÛÕÔ x 6 y.
áËÓÉÏÍÙ ÐÏÒÑÄËÁ (ÒÅÆÌÅËÓÉ×ÎÏÓÔØ, ÁÎÔÉÓÉÍÍÅÔÒÉÞÎÏÓÔØ, ÔÒÁÎÚÉÔÉ×-
ÎÏÓÔØ) ÍÏÇÕÔ ÂÙÔØ ÚÁÐÉÓÁÎÙ ÆÏÒÍÕÌÁÍÉ ÜÔÏÊ ÓÉÇÎÁÔÕÒÙ. îÁÐÒÉÍÅÒ, ÔÒÅ-
ÂÏ×ÁÎÉÅ ÁÎÔÉÓÉÍÍÅÔÒÉÞÎÏÓÔÉ ÚÁÐÉÓÙ×ÁÅÔÓÑ ÔÁË:
x y(((x 6 y) (y 6 x)) (x = y)).
éÎÏÇÄÁ × ÓÉÇÎÁÔÕÒÕ ÔÅÏÒÉÉ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ× ×ÍÅÓÔÏ ÓÉÍ×ÏÌÁ 6
×ËÌÀÞÁÀÔ ÓÉÍ×ÏÌ <; ÂÏÌØÛÏÊ ÒÁÚÎÉÃÙ ÔÕÔ ÎÅÔ.
úÁÄÁÞÁ 126. ëÁË ÚÁÐÉÓÁÔØ Ó ÐÏÍÏÝØÀ ÆÏÒÍÕÌÙ Ó×ÏÊÓÔ×Ï ÌÉÎÅÊÎÏÊ
ÕÐÏÒÑÄÏÞÅÎÎÏÓÔÉ? Ó×ÏÊÓÔ×Ï ÎÅ ÉÍÅÔØ ÎÁÉÂÏÌØÛÅÇÏ ÜÌÅÍÅÎÔÁ? Ó×ÏÊÓÔ×Ï
ÐÌÏÔÎÏÓÔÉ (ÏÔÓÕÔÓÔ×ÉÑ ÓÏÓÅÄÎÉÈ ÜÌÅÍÅÎÔÏ×)? Ó×ÏÊÓÔ×Ï ÆÕÎÄÉÒÏ×ÁÎÎÏ-
ÓÔÉ (ÏÔÓÕÔÓÔ×ÉÑ ÂÅÓËÏÎÅÞÎÙÈ ÕÂÙ×ÁÀÝÉÈ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÅÊ ¡ ÉÌÉ,
ÞÔÏ ÜË×É×ÁÌÅÎÔÎÏ, ÎÁÌÉÞÉÑ ÍÉÎÉÍÁÌØÎÏÇÏ ÜÌÅÍÅÎÔÁ × ÌÀÂÏÍ ÐÏÄÍÎÏÖÅ-
ÓÔ×Å)? Ó×ÏÊÓÔ×Ï ÐÏÌÎÏÊ ÕÐÏÒÑÄÏÞÅÎÎÏÓÔÉ? (õËÁÚÁÎÉÅ: ÎÅ ÄÌÑ ×ÓÅÈ ÐÅÒÅ-
ÞÉÓÌÅÎÎÙÈ Ó×ÏÊÓÔ× ÜÔÏ ×ÏÚÍÏÖÎÏ.)
óÉÇÎÁÔÕÒÕ ÔÅÏÒÉÉ ÇÒÕÐÐ ÍÏÖÎÏ ×ÙÂÉÒÁÔØ ÐÏ-ÒÁÚÎÏÍÕ. íÏÖÎÏ ÓÞÉÔÁÔØ,
ÞÔÏ (ÐÏÍÉÍÏ ÒÁ×ÅÎÓÔ×Á) ÏÎÁ ÉÍÅÅÔ Ä×ÕÍÅÓÔÎÙÊ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ ×
ÏÔÏÒÙÊ ÐÏ ÔÒÁÄÉÃÉÉ ÚÁÐÉÓÙ×ÁÀÔ ÍÅÖÄÕ ÍÎÏÖÉÔÅÌÑÍÉ), ËÏÎÓÔÁÎÔÕ (ÎÕÌØ-
ÍÅÓÔÎÙÊ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ) 1 É ÏÄÎÏÍÅÓÔÎÙÊ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ-
×ÏÌ inv(x) ÄÌÑ ÏÂÒÁÝÅÎÉÑ. ôÏÇÄÁ ÁËÓÉÏÍÙ ÔÅÏÒÉÉ ÇÒÕÐÐ ÚÁÐÉÓÙ×ÁÀÔÓÑ Ó
ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÌÉÛØ Ë×ÁÎÔÏÒÏ× ×ÓÅÏÂÝÎÏÓÔÉ:
x y z(((x × y) × z) = (x × (y × z))),
x (((x × 1) = x) ((1 × x) = x)),
x (((x × inv(x)) = 1) ((inv(x) × x) = 1)).
åÓÌÉ ÎÅ ×ËÌÀÞÁÔØ ÏÐÅÒÁÃÉÀ ÏÂÒÁÝÅÎÉÑ × ÓÉÇÎÁÔÕÒÕ, ÐÒÉľÔÓÑ ÉÓÐÏÌØ-
ÚÏ×ÁÔØ Ë×ÁÎÔÏÒ ÓÕÝÅÓÔ×Ï×ÁÎÉÑ É ÐÅÒÅÐÉÓÁÔØ ÐÏÓÌÅÄÎÀÀ ÁËÓÉÏÍÕ ÔÁË:
x y (((x × y) = 1) ((y × x) = 1)).
102                                      çÌÁ×Á V. ñÚÙËÉ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ

      ÕËÁÚÁÔØ ÜÌÅÍÅÎÔ ÍÎÏÖÅÓÔ×Á M, Ó ÎÉÍÉ ÓÏÐÏÓÔÁ×ÌÑÅÍÙÊ).
   åÓÌÉ ÓÉÇÎÁÔÕÒÁ ×ËÌÀÞÁÅÔ × ÓÅÂÑ ÓÉÍ×ÏÌ ÒÁ×ÅÎÓÔ×Á, ÔÏ ÓÒÅÄÉ Å¾ ÉÎÔÅÒÐÒÅ-
ÔÁÃÉÊ ×ÙÄÅÌÑÀÔ ÎÏÒÍÁÌØÎÙÅ ÉÎÔÅÒÐÒÅÔÁÃÉÉ, × ËÏÔÏÒÙÈ ÓÉÍ×ÏÌ ÒÁ×ÅÎÓÔ×Á
ÉÎÔÅÒÐÒÅÔÉÒÕÅÔÓÑ ËÁË ÓÏ×ÐÁÄÅÎÉÅ ÜÌÅÍÅÎÔÏ× ÍÎÏÖÅÓÔ×Á M.
   ðÒÉ×ÅÄ¾Í ÎÅÓËÏÌØËÏ ÐÒÉÍÅÒÏ× ÓÉÇÎÁÔÕÒ, ÉÓÐÏÌØÚÕÅÍÙÈ × ÒÁÚÌÉÞÎÙÈ ÔÅ-
ÏÒÉÑÈ.
   óÉÇÎÁÔÕÒÁ ÔÅÏÒÉÉ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ× ×ËÌÀÞÁÅÔ × ÓÅÂÑ Ä×Á Ä×Õ-
ÍÅÓÔÎÙÈ ÐÒÅÄÉËÁÔÎÙÈ ÓÉÍ×ÏÌÁ (ÒÁ×ÅÎÓÔ×Ï É ÐÏÒÑÄÏË) É ÎÅ ÉÍÅÅÔ ÆÕÎËÃÉÏ-
ÎÁÌØÎÙÈ ÓÉÍ×ÏÌÏ×. úÄÅÓØ ÔÁËÖÅ ×ÍÅÓÔÏ 6 (x, y) ÐÏ ÔÒÁÄÉÃÉÉ ÐÉÛÕÔ x 6 y.
   áËÓÉÏÍÙ ÐÏÒÑÄËÁ (ÒÅÆÌÅËÓÉ×ÎÏÓÔØ, ÁÎÔÉÓÉÍÍÅÔÒÉÞÎÏÓÔØ, ÔÒÁÎÚÉÔÉ×-
ÎÏÓÔØ) ÍÏÇÕÔ ÂÙÔØ ÚÁÐÉÓÁÎÙ ÆÏÒÍÕÌÁÍÉ ÜÔÏÊ ÓÉÇÎÁÔÕÒÙ. îÁÐÒÉÍÅÒ, ÔÒÅ-
ÂÏ×ÁÎÉÅ ÁÎÔÉÓÉÍÍÅÔÒÉÞÎÏÓÔÉ ÚÁÐÉÓÙ×ÁÅÔÓÑ ÔÁË:
                   ∀x ∀y(((x 6 y) ∧ (y 6 x)) → (x = y)).

  éÎÏÇÄÁ × ÓÉÇÎÁÔÕÒÕ ÔÅÏÒÉÉ ÕÐÏÒÑÄÏÞÅÎÎÙÈ ÍÎÏÖÅÓÔ× ×ÍÅÓÔÏ ÓÉÍ×ÏÌÁ 6
×ËÌÀÞÁÀÔ ÓÉÍ×ÏÌ <; ÂÏÌØÛÏÊ ÒÁÚÎÉÃÙ ÔÕÔ ÎÅÔ.

  úÁÄÁÞÁ 126. ëÁË ÚÁÐÉÓÁÔØ Ó ÐÏÍÏÝØÀ ÆÏÒÍÕÌÙ Ó×ÏÊÓÔ×Ï ÌÉÎÅÊÎÏÊ
ÕÐÏÒÑÄÏÞÅÎÎÏÓÔÉ? Ó×ÏÊÓÔ×Ï ÎÅ ÉÍÅÔØ ÎÁÉÂÏÌØÛÅÇÏ ÜÌÅÍÅÎÔÁ? Ó×ÏÊÓÔ×Ï
ÐÌÏÔÎÏÓÔÉ (ÏÔÓÕÔÓÔ×ÉÑ ÓÏÓÅÄÎÉÈ ÜÌÅÍÅÎÔÏ×)? Ó×ÏÊÓÔ×Ï ÆÕÎÄÉÒÏ×ÁÎÎÏ-
ÓÔÉ (ÏÔÓÕÔÓÔ×ÉÑ ÂÅÓËÏÎÅÞÎÙÈ ÕÂÙ×ÁÀÝÉÈ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÅÊ ¡ ÉÌÉ,
ÞÔÏ ÜË×É×ÁÌÅÎÔÎÏ, ÎÁÌÉÞÉÑ ÍÉÎÉÍÁÌØÎÏÇÏ ÜÌÅÍÅÎÔÁ × ÌÀÂÏÍ ÐÏÄÍÎÏÖÅ-
ÓÔ×Å)? Ó×ÏÊÓÔ×Ï ÐÏÌÎÏÊ ÕÐÏÒÑÄÏÞÅÎÎÏÓÔÉ? (õËÁÚÁÎÉÅ: ÎÅ ÄÌÑ ×ÓÅÈ ÐÅÒÅ-
ÞÉÓÌÅÎÎÙÈ Ó×ÏÊÓÔ× ÜÔÏ ×ÏÚÍÏÖÎÏ.)

   óÉÇÎÁÔÕÒÕ ÔÅÏÒÉÉ ÇÒÕÐÐ ÍÏÖÎÏ ×ÙÂÉÒÁÔØ ÐÏ-ÒÁÚÎÏÍÕ. íÏÖÎÏ ÓÞÉÔÁÔØ,
ÞÔÏ (ÐÏÍÉÍÏ ÒÁ×ÅÎÓÔ×Á) ÏÎÁ ÉÍÅÅÔ Ä×ÕÍÅÓÔÎÙÊ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ ×
(ËÏÔÏÒÙÊ ÐÏ ÔÒÁÄÉÃÉÉ ÚÁÐÉÓÙ×ÁÀÔ ÍÅÖÄÕ ÍÎÏÖÉÔÅÌÑÍÉ), ËÏÎÓÔÁÎÔÕ (ÎÕÌØ-
ÍÅÓÔÎÙÊ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ×ÏÌ) 1 É ÏÄÎÏÍÅÓÔÎÙÊ ÆÕÎËÃÉÏÎÁÌØÎÙÊ ÓÉÍ-
×ÏÌ inv(x) ÄÌÑ ÏÂÒÁÝÅÎÉÑ. ôÏÇÄÁ ÁËÓÉÏÍÙ ÔÅÏÒÉÉ ÇÒÕÐÐ ÚÁÐÉÓÙ×ÁÀÔÓÑ Ó
ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÌÉÛØ Ë×ÁÎÔÏÒÏ× ×ÓÅÏÂÝÎÏÓÔÉ:
                ∀x ∀y ∀z(((x × y) × z) = (x × (y × z))),
                ∀x (((x × 1) = x) ∧ ((1 × x) = x)),
                ∀x (((x × inv(x)) = 1) ∧ ((inv(x) × x) = 1)).

   åÓÌÉ ÎÅ ×ËÌÀÞÁÔØ ÏÐÅÒÁÃÉÀ ÏÂÒÁÝÅÎÉÑ × ÓÉÇÎÁÔÕÒÕ, ÐÒÉľÔÓÑ ÉÓÐÏÌØ-
ÚÏ×ÁÔØ Ë×ÁÎÔÏÒ ÓÕÝÅÓÔ×Ï×ÁÎÉÑ É ÐÅÒÅÐÉÓÁÔØ ÐÏÓÌÅÄÎÀÀ ÁËÓÉÏÍÕ ÔÁË:
                   ∀x ∃y (((x × y) = 1) ∧ ((y × x) = 1)).