ВУЗ:
Составители:
Рубрика:
90 çÌÁ×Á III. äÉÆÆÅÒÅÎÃÉÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ
÷ ÔÏÞËÁÈ, × ËÏÔÏÒÙÈ x
0
(t) 6= 0, ÉÍÅÅÍ
y
0
x
(t) =
y
0
(t)
x
0
(t)
=
7 sin t
7(1 − cos t)
=
sin t
1 − cos t
=
=
2 sin
t
2
cos
t
2
cos
2
t
2
+ sin
2
t
2
−
cos
2
t
2
− sin
2
t
2
=
2 sin
t
2
cos
t
2
2 sin
2 t
2
=
cos
t
2
sin
t
2
= ctg
t
2
.
äÌÑ ÎÁÈÏÖÄÅÎÉÑ ÐÒÏÉÚ×ÏÄÎÏÊ y
00
xx
(t) ÐÏ ÐÅÒ×ÏÊ ÆÏÒÍÕÌÅ ×ÙÞÉÓÌÉÍ ÓÎÁÞÁÌÁ
(y
0
x
(t))
0
:
(y
0
x
(t))
0
=
ctg
t
2
0
= −
1
2 sin
2 t
2
.
ôÅÐÅÒØ ÎÁÈÏÄÉÍ y
00
xx
(t):
y
00
xx
(t) =
(y
0
x
(t))
0
x
0
(t)
=
−
1
2 sin
2
t
2
7(1 − cos t)
= −
1
28 sin
4
t
2
.
éÔÁË, y
0
x
(t) = ctg
t
2
, y
00
xx
(t) = −
1
28 sin
4
t
2
.
ðÒÉÍÅÒ 3. îÁÊÔÉ y
00
xx
(t) ÆÕÎËÃÉÉ, ÚÁÄÁÎÎÏÊ ÐÁÒÁÍÅÔÒÉÞÅÓËÉ:
x(t) = ln(1 − t), y(t) = (t + 1)
2
.
òÅÛÅÎÉÅ. ÷ÏÓÐÏÌØÚÕÅÍÓÑ ÆÏÒÍÕÌÏÊ:
y
00
xx
(t) =
y
00
(t)x
0
(t) − x
00
(t)y
0
(t)
(x
0
(t))
3
.
äÌÑ ÜÔÏÇÏ ×ÙÞÉÓÌÉÍ ÐÒÏÉÚ×ÏÄÎÙÅ x
0
(t), x
00
(t), y
0
(t), y
00
(t):
x
0
(t) = (ln(1 − t))
0
=
1
1 − t
(1 − t)
0
= −
1
1 − t
;
x
00
(t) = (x
0
(t))
0
=
−
1
1 − t
0
= −
(1 − t)
−1
0
= (1 −t
−2
)(1 −t)
0
= −
1
(1 − t)
2
;
y
0
(t) =
(t + 1)
2
0
= 2(t + 1);
y
00
(t) = (y
0
(t))
0
= (2(t + 1))
0
= 2.
90 çÌÁ×Á III. äÉÆÆÅÒÅÎÃÉÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ ÷ ÔÏÞËÁÈ, × ËÏÔÏÒÙÈ x0(t) 6= 0, ÉÍÅÅÍ y 0 (t) 7 sin t sin t yx0 (t) = 0 = = = x (t) 7(1 − cos t) 1 − cos t 2 sin 2t cos 2t 2 sin 2t cos 2t cos 2t t = 2 t 2 t 2 t 2 t = 2 t = t = ctg . cos 2 + sin 2 − cos 2 − sin 2 2 sin 2 sin 2 2 00 äÌÑ ÎÁÈÏÖÄÅÎÉÑ ÐÒÏÉÚ×ÏÄÎÏÊ yxx (t) ÐÏ ÐÅÒ×ÏÊ ÆÏÒÍÕÌÅ ×ÙÞÉÓÌÉÍ ÓÎÁÞÁÌÁ 0 0 (yx (t)) : 0 0 0 t 1 (yx (t)) = ctg =− . 2 2 sin2 2t 00 ôÅÐÅÒØ ÎÁÈÏÄÉÍ yxx (t): (y 0 (t))0 − 2 sin1 2 t 1 00 yxx (t) = x0 = 2 =− . x (t) 7(1 − cos t) 28 sin4 2t éÔÁË, yx0 (t) = ctg 2t , yxx 00 1 (t) = − 28 sin4 t . 2 ðÒÉÍÅÒ 3. îÁÊÔÉ 00 yxx (t) ÆÕÎËÃÉÉ, ÚÁÄÁÎÎÏÊ ÐÁÒÁÍÅÔÒÉÞÅÓËÉ: x(t) = ln(1 − t), y(t) = (t + 1)2. òÅÛÅÎÉÅ. ÷ÏÓÐÏÌØÚÕÅÍÓÑ ÆÏÒÍÕÌÏÊ: 00 y 00 (t)x0(t) − x00 (t)y 0(t) yxx (t) = . (x0(t))3 äÌÑ ÜÔÏÇÏ ×ÙÞÉÓÌÉÍ ÐÒÏÉÚ×ÏÄÎÙÅ x0 (t), x00(t), y 0 (t), y 00 (t): 1 1 x0(t) = (ln(1 − t))0 = (1 − t)0 = − ; 1−t 1−t 0 00 0 0 1 0 1 x (t) = (x (t)) = − = − (1 − t)−1 = (1 − t−2 )(1 − t)0 = − ; 1−t (1 − t)2 0 y 0 (t) = (t + 1)2 = 2(t + 1); 0 y 00 (t) = (y 0 (t)) = (2(t + 1))0 = 2.
Страницы
- « первая
- ‹ предыдущая
- …
- 88
- 89
- 90
- 91
- 92
- …
- следующая ›
- последняя »