Сборник задач по высшей математике. Часть II. Пределы. Производные. Графики функций. Самохин А.В - 95 стр.

UptoLike

Рубрика: 

§12. òÁÓËÒÙÔÉÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ. ðÒÁ×ÉÌÁ ìÏÐÉÔÁÌÑ 95
ðÒÉÍÅÒ 2.
lim
x0
e
x
1
x
=
0
0
= lim
x0
(e
x
1)
0
x
0
= lim
x0
e
x
1
= lim
x0
e
x
= 1.
ðÒÉÍÅÒ 3.
lim
x0
e
x
e
x
ln(e x) + x 1
=
0
0
= lim
x0
(e
x
e
x
)
0
(ln(e x) + x 1)
0
=
= lim
x0
e
x
+ e
x
1
ex
+ 1
=
1
1
1
e
=
2e
e 1
.
úÁÍÅÞÁÎÉÅ. åÓÌÉ ÐÒÏÉÚ×ÏÄÎÙÅ f
0
(x) É g
0
(x) ÕÄÏ×ÌÅÔ×ÏÒÑÀÔ ÔÅÍ ÖÅ ÔÒÅ-
ÂÏ×ÁÎÉÑÍ, ÞÔÏ É ÓÁÍÉ ÆÕÎËÃÉÉ f(x) É g(x), ÔÏ ÐÒÁ×ÉÌÏ ìÏÐÉÔÁÌÑ ÍÏÖÎÏ
ÐÒÉÍÅÎÉÔØ ÐÏ×ÔÏÒÎÏ. ðÒÉ ÜÔÏÍ ÐÏÌÕÞÁÅÍ
lim
xa
f(x)
g(x)
= lim
xa
f
0
(x)
g
0
(x)
= lim
xa
f
00
(x)
g
00
(x)
.
ðÒÉÍÅÒ 4.
lim
x0
1 cos x
x
2
=
0
0
= lim
x0
(1 cos x)
0
(x
2
)
0
= lim
x0
sin x
2x
=
=
1
2
lim
x0
sin x
x
=
0
0
=
1
2
lim
x0
(sin x)
0
x
0
=
1
2
lim
x0
cos x
1
=
1
2
· 1 =
1
2
.
îÁÐÏÍÎÉÍ, ÞÔÏ lim
x0
sin x
x
= 1 É ÐÏ ÐÅÒ×ÏÍÕ ÚÁÍÅÞÁÔÅÌØÎÏÍÕ ÐÒÅÄÅÌÕ.
ðÒÉÍÅÒ 5.
lim
x0
x sin x
x
3
=
0
0
= lim
x0
(x sin x)
0
(x
3
)
0
= lim
x0
1 cos x
3x
2
=
0
0
=
= lim
x0
(1 cos x)
0
(3x
2
)
0
= lim
x0
sin x
6x
=
1
6
lim
x0
sin x
x
=
1
6
· 1 =
1
6
.
12.2. òÁÓËÒÙÔÉÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ ×ÉÄÁ
. ÷ÔÏÒÏÅ ÐÒÁ×ÉÌÏ ìÏ-
ÐÉÔÁÌÑ
âÕÄÅÍ ÇÏ×ÏÒÉÔØ, ÞÔÏ ÏÔÎÏÛÅÎÉÅ Ä×ÕÈ ÆÕÎËÃÉÊ
f(x)
g(x)
ÐÒÉ x a ÅÓÔØ ÎÅ-
ÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ
, ÅÓÌÉ
lim
xa
f(x) = lim
xa
g(x) = , + ÉÌÉ .
§12. òÁÓËÒÙÔÉÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ. ðÒÁ×ÉÌÁ ìÏÐÉÔÁÌÑ                                     95

  ðÒÉÍÅÒ 2.
              ex − 1             (ex − 1)0       ex
                        
                        0
          lim        =     = lim       0
                                           = lim    = lim ex = 1.
          x→0    x      0    x→0     x       x→0 1    x→0

  ðÒÉÍÅÒ 3.

          ex − e−x                      (ex − e−x )0
                          
                          0
 lim                   =     = lim                       =
 x→0 ln(e − x) + x − 1    0    x→0 (ln(e − x) + x − 1)0

                                                 ex + e−x    1                      2e
                                          = lim      1     =               1   =       .
                                             x→0 −
                                                    e−x
                                                        +1 1−              e
                                                                                   e−1

   úÁÍÅÞÁÎÉÅ. åÓÌÉ ÐÒÏÉÚ×ÏÄÎÙÅ f 0 (x) É g 0 (x) ÕÄÏ×ÌÅÔ×ÏÒÑÀÔ ÔÅÍ ÖÅ ÔÒÅ-
ÂÏ×ÁÎÉÑÍ, ÞÔÏ É ÓÁÍÉ ÆÕÎËÃÉÉ f (x) É g(x), ÔÏ ÐÒÁ×ÉÌÏ ìÏÐÉÔÁÌÑ ÍÏÖÎÏ
ÐÒÉÍÅÎÉÔØ ÐÏ×ÔÏÒÎÏ. ðÒÉ ÜÔÏÍ ÐÏÌÕÞÁÅÍ
                            f (x)       f 0 (x)       f 00(x)
                        lim       = lim 0       = lim 00 .
                        x→a g(x)    x→a g (x)     x→a g (x)

  ðÒÉÍÅÒ 4.

                            (1 − cos x)0
                  
     1 − cos x    0                            sin x
 lim           =     =  lim              = lim       =
 x→0    x2        0    x→0     (x2)0       x→0 2x

                                           (sin x)0
                               
                1    sin x     0      1               1     cos x 1        1
              = lim        =      = lim             =   lim      =   · 1 =   .
                2 x→0 x        0      2 x→0 x0        2 x→0 1      2       2
îÁÐÏÍÎÉÍ, ÞÔÏ lim sinx x = 1 É ÐÏ ÐÅÒ×ÏÍÕ ÚÁÍÅÞÁÔÅÌØÎÏÍÕ ÐÒÅÄÅÌÕ.
                x→0
  ðÒÉÍÅÒ 5.

                           (x − sin x)0
                                                           
     x − sin x    0                            1 − cos x      0
 lim           =     = lim              =  lim            =       =
 x→0    x3        0    x→0     (x3)0       x→0    3x2         0
                          (1 − cos x)0        sin x 1        sin x 1         1
                    = lim               = lim      =     lim       =   · 1 =   .
                      x→0    (3x2)0       x→0 6x      6 x→0 x        6       6

                                                       ∞
12.2. òÁÓËÒÙÔÉÅ ÎÅÏÐÒÅÄÅ̾ÎÎÏÓÔÅÊ ×ÉÄÁ                 ∞.    ÷ÔÏÒÏÅ ÐÒÁ×ÉÌÏ ìÏ-
      ÐÉÔÁÌÑ
                                                            f (x)
  âÕÄÅÍ ÇÏ×ÏÒÉÔØ, ÞÔÏ ÏÔÎÏÛÅÎÉÅ Ä×ÕÈ ÆÕÎËÃÉÊ                g(x)    ÐÒÉ x → a ÅÓÔØ ÎÅ-
                    ∞
ÏÐÒÅÄÅ̾ÎÎÏÓÔØ ×ÉÄÁ ∞ , ÅÓÌÉ
                  lim f (x) = lim g(x) = ∞, +∞ ÉÌÉ − ∞.
                  x→a           x→a