ВУЗ:
Составители:
Рубрика:
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 17
ôÏÇÄÁ ÉÎÔÅÇÒÁÌ ÏÔ ÄÒÏÂÉ III ÚÁÐÉÛÅÔÓÑ × ×ÉÄÅ:
Z
Ax + B
x
2
+ px + q
dx =
Z
Ax + B
x +
p
2
2
+ k
dx =
Z
A
x +
p
2
−
p
2
+ B
x +
p
2
2
+ k
dx =
=
Z
A
x +
p
2
x +
p
2
2
+ k
dx +
Z
B − A ·
p
2
x +
p
2
2
+ k
dx =
Z
At
t
2
+ k
dt +
Z
B − A ·
p
2
t
2
+ k
dt,
ÇÄÅ t = x +
p
2
.
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t
2
+ k, Á ÉÍÅÎÎÏ:
Z
t dt
t
2
+ k
=
1
2
Z
dt
2
t
2
+ k
=
1
2
Z
d(t
2
+ k)
t
2
+ k
=
1
2
ln |t
2
+ k| + C.
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ
R
dt
t
2
+k
Ñ×ÌÑÅÔÓÑ ÔÁÂÌÉÞÎÙÍ.
ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÄÒÏÂÉ IV ÁÎÁÌÏÇÉÞÎÏ III ÐÏÌÕÞÉÍ:
Z
Ax + B
(x
2
+ px + q)
m
dx =
Z
Ax + B dx
x +
p
2
2
+ k
m
=
Z
A
x +
p
2
−
p
2
+ B
x +
p
2
2
+ k
m
dx =
= A
Z
t dt
(t
2
+ k)
m
+
B − A ·
p
2
·
Z
dt
(t
2
+ k)
m
.
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t
2
+ k, Á ÉÍÅÎÎÏ:
Z
t dt
(t
2
+ k)
m
=
1
2
Z
dt
2
(t
2
+ k)
m
=
1
2
Z
d(t
2
+ k)
(t
2
+ k)
m
=
1
2
Z
du
u
m
=
= −
1
2
·
1
m − 1
·
1
u
m−1
+ C = −
1
2(m − 1)
·
1
(t
2
+ k)
m−1
+ C.
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ ×ÙÞÉÓÌÑÅÔÓÑ ÍÅÔÏÄÏÍ ÐÏÎÉÖÅÎÉÑ. ðÕÓÔØ I
m
=
R
dt
(t
2
+k)
m
,
ÔÏÇÄÁ I
m−1
=
R
dt
(t
2
+k)
m−1
.
òÁÓÓÍÏÔÒÉÍ ÉÎÔÅÇÒÁÌ I
m
:
I
m
=
Z
dt
(t
2
+ k)
m
=
1
k
Z
k
(t
2
+ k)
m
dt =
1
k
Z
k + t
2
− t
2
(t
2
+ k)
m
dt =
=
1
k
·
Z
k + t
2
(t
2
+ k)
m
dt −
Z
t
2
(t
2
+ k)
m
dt
=
=
1
k
Z
dt
(t
2
+ k)
m−1
−
Z
t ·
t dt
(t
2
+ k)
m
=
1
k
·
I
m−1
−
1
2
Z
t
d(t
2
+ k)
(t
2
+ k)
m
.
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 17 ôÏÇÄÁ ÉÎÔÅÇÒÁÌ ÏÔ ÄÒÏÂÉ III ÚÁÐÉÛÅÔÓÑ × ×ÉÄÅ: A x + p2 − p2 + B Ax + B Ax + B Z Z Z dx = 2 dx = 2 dx = x2 + px + q x + 2p + k x + 2p + k A x + 2p B − A · 2p B − A · p2 At Z Z Z Z = 2 dx + 2 dx = dt + dt, x + p2 + k x + p2 + k t2 + k t2 + k ÇÄÅ t = x + p2 . ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t2 + k, Á ÉÍÅÎÎÏ: t dt 1 dt2 1 d(t2 + k) 1 Z Z Z 2 = 2 = 2 = ln |t2 + k| + C. t +k 2 t +k 2 t +k 2 ÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ t2dt+k Ñ×ÌÑÅÔÓÑ ÔÁÂÌÉÞÎÙÍ. R ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÄÒÏÂÉ IV ÁÎÁÌÏÇÉÞÎÏ III ÐÏÌÕÞÉÍ: A x + 2p − p2 + B Ax + B Ax + B dx Z Z Z dx = m = m dx = (x2 + px + q)m 2 2 x + p2 + k x + p2 + k t dt p dt Z Z =A + B − A · · . (t2 + k)m 2 (t2 + k)m ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t2 + k, Á ÉÍÅÎÎÏ: t dt 1 dt2 1 d(t2 + k) 1 du Z Z Z Z 2 m = 2 m = 2 m = = (t + k) 2 (t + k) 2 (t + k) 2 um 1 1 1 1 1 =− · · m−1 + C = − · 2 + C. 2 m−1 u 2(m − 1) (t + k)m−1 R dt ÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ ×ÙÞÉÓÌÑÅÔÓÑ ÍÅÔÏÄÏÍ ÐÏÎÉÖÅÎÉÑ. ðÕÓÔØ I m = (t2 +k) m, dt R ÔÏÇÄÁ Im−1 = (t2 +k) m−1 . òÁÓÓÍÏÔÒÉÍ ÉÎÔÅÇÒÁÌ Im : dt 1 k 1 k + t2 − t 2 Z Z Z Im = = dt = dt = (t2 + k)m k (t2 + k)m k (t2 + k)m k + t2 t2 Z 1 Z = · dt − dt = k (t2 + k)m (t2 + k)m d(t2 + k) Z 1 dt t dt 1 1 Z Z = − t· 2 = · Im−1 − t 2 . k (t2 + k)m−1 (t + k)m k 2 (t + k)m
Страницы
- « первая
- ‹ предыдущая
- …
- 15
- 16
- 17
- 18
- 19
- …
- следующая ›
- последняя »