ВУЗ:
Составители:
Рубрика:
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 33
ðÒÉÍÅÒ 45.
Z
dx
cos x sin
3
x
=
Z
dx
cos
4
x tg
3
x
=
=
Z
(1 + tg
2
x) tg
−3
x d tg x =
Z
t
−3
(1 + t) dt =
=
Z
(t
−3
+ t
−2
) dt = −
1
2 tg
2
x
−
1
tg x
+ C.
III. éÎÔÅÇÒÁÌÙ ×ÉÄÁ
Z
sin(ax + b) cos(cx + p) dx,
Z
sin(ax + b) sin(cx + p) dx,
Z
cos(ax + b) cos(cx + p) dx
ÕÐÒÏÝÁÀÔÓÑ ÎÁ ÏÓÎÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÔÏÖÄÅÓÔ×
sin α cos β =
1
2
(sin(α + β) + sin(α − β)),
sin α sin β =
1
2
(cos(α − β) − cos(α + β)),
cos α cos β =
1
2
(cos(α + β) + cos(α − β)).
ðÒÉÍÅÒ 46.
Z
sin(3x + 1) cos(2x + 3) dx =
1
2
Z
(sin(5x + 4)+
+ sin(x − 2)) dx =
1
2
Z
sin(5x + 4)
5
d(5x + 4)+
+
Z
sin(x − 2) d(x − 2)
= −
cos(5x + 4)
10
−
cos(x − 2)
2
+ C.
ëÒÏÍÅ ÔÏÇÏ, ÐÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ ÍÏÖÎÏ
ÐÏÌØÚÏ×ÁÔØÓÑ ÆÏÒÍÕÌÁÍÉ üÊÌÅÒÁ
sin x =
1
2i
(e
ix
− e
−ix
), cos x =
1
2
(e
ix
+ e
−ix
).
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 33
ðÒÉÍÅÒ 45.
dx dx
Z Z
= =
cos x sin3 x cos4 x tg3 x
Z Z
2 −3
= (1 + tg x) tg x d tg x = t−3(1 + t) dt =
1 1
Z
= (t−3 + t−2 ) dt = − − + C.
2 tg2 x tg x
III. éÎÔÅÇÒÁÌÙ ×ÉÄÁ
Z
sin(ax + b) cos(cx + p) dx,
Z
sin(ax + b) sin(cx + p) dx,
Z
cos(ax + b) cos(cx + p) dx
ÕÐÒÏÝÁÀÔÓÑ ÎÁ ÏÓÎÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÔÏÖÄÅÓÔ×
1
sin α cos β = (sin(α + β) + sin(α − β)),
2
1
sin α sin β = (cos(α − β) − cos(α + β)),
2
1
cos α cos β = (cos(α + β) + cos(α − β)).
2
ðÒÉÍÅÒ 46.
1
Z Z
sin(3x + 1) cos(2x + 3) dx = (sin(5x + 4)+
2
Z
1 sin(5x + 4)
+ sin(x − 2)) dx = d(5x + 4)+
2 5
cos(5x + 4) cos(x − 2)
Z
+ sin(x − 2) d(x − 2) = − − + C.
10 2
ëÒÏÍÅ ÔÏÇÏ, ÐÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ ÍÏÖÎÏ
ÐÏÌØÚÏ×ÁÔØÓÑ ÆÏÒÍÕÌÁÍÉ üÊÌÅÒÁ
1 ix 1 ix
sin x = (e − e−ix ), cos x = (e + e−ix ).
2i 2
Страницы
- « первая
- ‹ предыдущая
- …
- 31
- 32
- 33
- 34
- 35
- …
- следующая ›
- последняя »
