Вычислительные методы алгебры и оценивания. Семушин И.В. - 160 стр.

UptoLike

Составители: 

9
Фонд задач
Целью настоящ его раздела является формирование и проверка у с т у-
дентов, изучающих курс «Численные методы», базовых навыков в области
решения задач вычислительной линейной алгебры. Предлагаемые в этом
разделе задачи охватывают широкий спектр методов: гауссово исключение
переменных, итерационные методы решения систем линейных алгебраиче-
ских уравнений, включая методы вариационного типа, факторизацию поло-
жительно определенных матриц и ортогональные преобразования. Приво-
димые ниже задачи могут быть использованы как для практических заня-
тий и контрольных работ в аудитории, так и для самостоят ельной работы
студента, а также для проверки практических навыков студентов во время
экзамена. Д а нный материал позволяет не только проверить знание базовых
алгоритмов в области вычислительной линейной алге б ры, но и определить
уровень владения вычислительной техникой для решения тех или иных при-
кладных задач. Большое разнообразие и количество задач создает воз м ож-
ность формирования индивидуального задания для каждого студента.
9.1 Типовые задачи
Начнем прежде всего, с разбора типовых задач. В соответствии с вы-
шесказанным настоя щее учебное пособ ие содержит задачи по следующим
пяти темам: метод исключения Гаусса, итерационные методы, итерацион-
ные методы вариационного типа, разложение Холесского для симметричных
положительно опреде ле нных матриц и методы ортогонального приведения.
Задача 1 (см. ниже) является типичным представителем задач на метод
Гаусса исключения переменных. Це лью задачи является проверка знания
базовых алгоритмов для разложения невырожденной матрицы в произведе-
ние нижней и верхней треугольных матриц, а также для решения системы