ВУЗ:
Составители:
9 Фонд задач
в. С помощью L
¯
U-разложения найти матрицу A
−1
и вычислить число
M
A
обусловленности матрицы A в норме k·k
∞
= max
i=1,2,3
{|x
i
|}, x ∈ R
3
.
Задача 4
Для матрицы
A =
−3 1 1
2 1 2
4 0 2
выполнить следующее:
а. Построить U
¯
L-разложение матрицы A (
¯
L с единицами на главной диа-
гонали).
б. С помощью U
¯
L-разложения матрицы A решить систему линейных
уравнений
Ax = b,
где вектор b = (5, 2, 0)
T
.
в. С помощью U
¯
L-разложения найти матрицу A
−1
и вычислить число
M
A
обусловленности матрицы A в норме k·k
∞
= max
i=1,2,3
{|x
i
|}, x ∈ R
3
.
Задача 5
Для матрицы
A =
2 2 −4
1 2 −2
2 1 −1
выполнить следующее:
а. Построить L
¯
U
−1
-разложение матрицы A (
¯
U
−1
с единицами на главной
диагонали).
б. С помощью L
¯
U
−1
-разложения матрицы A решить систему линейных
уравнений
Ax = b,
где вектор b = (0, −1, −2)
T
.
176
Страницы
- « первая
- ‹ предыдущая
- …
- 174
- 175
- 176
- 177
- 178
- …
- следующая ›
- последняя »
