ВУЗ:
Составители:
Рубрика:
y 2 E POLU^AEM Ay = lim 1 A(ty) = lim o(ty) = (t 2 R | ^ISLOWOJ
t!0 t t!0 t
PARAMETR). iTAK, A = 0, TO ESTX L = Lx: >
4. eSLI OTOBRAVENIE f DIFFERENCIRUEMO W TO^KE x, TO ONO W \TOJ
TO^KE NEPRERYWNO.
uTWERVDENIE SLEDUET IZ OCENKI (SM. 74.2)
kf (x + h) , f (x)k kf 0(x)k khk + ko(h)k (h ! ): >
5. eSLI f : ! F POSTOQNNO, TO f 0 (x) = 0 (x 2 ).
6. wSQKOE LINEJNOE OTOBRAVENIE A : E ! F DIFFERENCIRUEMO W
KAVDOJ TO^KE x 2 E , PRI^EM A0(x) = A.
w SILU LINEJNOSTI A RAWENSTWO (1) PRIOBRETAET WID A(x + h) , Ax =
Ah (x; h 2 E ): >
7.eSLI f; g DIFFERENCIRUEMY W TO^KE x, TO W \TOJ TO^KE DIFFE-
RENCIRUEMY OTOBRAVENIQ f g; f ( 2 ), PRI^EM
(f g)0(x) = f 0(x) g0(x); (f )0 (x) = f 0(x):
8.[dIFFERENCIROWANIE SUPERPOZICII OTOBRAVENIJ]. pUSTX ZADANY
OTOBRAVENIQ f : ! F; g : ! G ( E; F; f ( ) ), PRI^EM f
DIFFERENCIRUEMO W TO^KE x 2 , A g DIFFERENCIRUEMO W TO^KE f (x) 2
. tOGDA g f DIFFERENCIRUEMO W TO^KE x I
(g f )0(x) = g0(f (x)) f 0(x):
sPRAWEDLIWA WYKLADKA
g(f (x + h)) , g(f (x)) = g(f (x) + [f (x + h) , f (x)]) , g(f (x))
= g0(f (x))[f (x + h) , f (x)] + o(f (x + h) , f (x))
= g0(f (x))(f 0(x)h + o(h)) + o(f 0(x)h + o(h))
= g0(f (x)) f 0(x)(h) + g0(f (x))(o(h)) + o(h) (h ! ):
tEPERX IZ OCENKI kg0(f (xk))( hk
o(h))k kg0(f (x))k ko(h)k SLEDUET, ^TO
khk
g f (x + h) , g f (x) = g0(f (x)) f 0(x)(h) + o(h) (h ! ): >
122
Страницы
- « первая
- ‹ предыдущая
- …
- 120
- 121
- 122
- 123
- 124
- …
- следующая ›
- последняя »
