ВУЗ:
Составители:
Рубрика:
7. [kRITERIJ kO[I (SLU^AJ OSOBENNOSTI x0 2 , )]. iNTEGRAL (1)
SHODITSQ TTOGDA
Z
8" > 0 9 > 0 8r; s r < s < ) j f (x) dxj < " :
[Bs(x0 )nBr (x0 )]\
8. gOWORQT, ^TO NESOBSTWENNYJ
Z INTEGRAL (1) SHODITSQ ABSOL@TNO, ES-
LI SHODITSQ INTEGRAL jf (x)j dx. oTMETIM, ^TO ESLI INTEGRAL SHODITSQ
ABSOL@TNO, TO ON SHODITSQ.
nAPRIMER, W SLU^AE EDINSTWENNOJ OSOBENNOSTI W TO^KE x0 2 , \TO
SLEDUET IZ P. 7 I OCENKI
Z Z
j f (x) dxj jf (x)j dx (r < s):
[Bs(x0 )nBr (x0 )]\ [Bs(x0 )nBr (x0)]\
ZZZ
p R I M E R Y. 9. iNTEGRAL J = (x2 + y2 + z2), dxdydz( > 0),
GDE = f(x; y; z) : x2 + y2 + z2 1g, IMEET EDINSTWENNU@ OSOBENNOSTX W
TO^KE (0; 0; 0). pRI \TOM
ZZZ
lim
"!0+
(x2 + y2 + z2), dxdydz
\B"()c
Z1 Z =2 Z 2 Z1
= "lim 2 ,
r dr 2 cos 'd' dt = "lim 4 r2,2 dr.
!0+ " ,=2 0 !0+ "
iTAK, J SHODITSQZPRI < 3=2 I RASHODITSQ PRI 3=2:
+1 ,x2
10. wY^ISLIM e dx S ISPOLXZOWANIEM DWOJNOGO NESOBSTWENNOGO
INTEGRALA: 0
Z +1 2 Z NZ N 2 2 1 = 2
Z =2 Z N 2 1=2
,
e dx = N lim
x [ e , x , y dxdy] = R!lim+1[ d' re,r ]
0 p!+1 0 0 0 0
= 2 :
Z u P R A V N E N I E. dLQ > 0 ISSLEDOWATX NA SHODIMOSTX INTEGRAL
Z Z 11.
(x2 + y2 + z2), dxdydz, GDE = f(x; y; z) : x2 + y2 + z2 1g.
209
Страницы
- « первая
- ‹ предыдущая
- …
- 207
- 208
- 209
- 210
- 211
- …
- следующая ›
- последняя »
