ВУЗ:
Составители:
Рубрика:
Z Z
oTS@DA jf , f j d = (f , f ) d = 0, TO ESTX (SM. 207.14) f = f = f P.W.
Z Z Z1
NA [0; 1]. tAKIM OBRAZOM, f d = f d = (R) 0 f (x) dx. sFORMULIRUEM
POLU^ENNYJ REZULXTAT.
2. eSLI f INTEGRIRUEMA NA OTREZKE PO rIMANU, TO ONA INTEGRIRUEMA
PO lEBEGU I SOOTWETSTWU@]IE INTEGRALY SOWPADA@T.
z A M E ^ A N I Q. 3. nEOGRANI^ENNYE FUNKCII WOOB]E NE INTEGRIRUEMY
PO rIMANU, NO NEKOTORYE IZ NIH INTEGRIRUEMY PO lEBEGU. nAPRIMER,
( ,1=2
f (x) = x0; ; ESLI 0 < x 1,
ESLI x = 0,
NE INTEGRIRUEMA PO rIMANU. oDNAKO, f INTEGRIRUEMA PO lEBEGU. dEJST-
WITELXNO, POLOVIM fn(x) = x,1=2[n,2;1] (x) (n = 1; 2; : : :). qSNO, ^TO fn ! f
I PO P. 2 Z Z1
fn d = (R) 0 fn (x) dx = 2 , n2 2:
oSTAETSQ WOSPOLXZOWATXSQ
Z 1 TEOREMOJ fATU.
4. eSLI lim (R) jf (x)j dx < +1 , TO f INTEGRIRUEMA PO lEBEGU NA
"!Z0+ " Z1
[0; 1], PRI^EM f d = "lim (R) f (x) dx (!!).
Z 1 !0+ "
5. eSLI lim (R) jf (x)j dx = +1, TO f NE INTEGRIRUEMA PO lEBEGU,
"!0+ Z "
1
DAVE ESLI "lim!0+
(R )
"
f (x) dx SU]ESTWUET.
fpOLOVIM fn = f (1=n;1] (n = 1; 2; : : :). tOGDA jfnj jf j; jfnj P,!
.W. jf j. eSLI
Z
DOPUSTITX, ^TO f INTEGRIRUEMA PO lEBEGU, TO W SILU 207.12 jf j d <
+1; W ^ASTNOSTI,
Z1 Z Z
(R) jf (x)j dx = jfnj d jf j d;
1=n
Z1
ODNAKO, (R) " jf (x)j dx ! +1 (" ! 0).g
350
Страницы
- « первая
- ‹ предыдущая
- …
- 348
- 349
- 350
- 351
- 352
- …
- следующая ›
- последняя »
