ВУЗ:
Составители:
Рубрика:
pRIWEDEM DOKAZATELXSTWO DLQ n = 2. pUSTX S = S1 S2 I X; Y 2 S,
TO ESTX
(1) X = X1 X2; Y = Y1 Y2 (Xk ; Yk 2 Sk ; k = 1; 2):
tOGDA XY = X1 Y1 X2Y2, PRI^EM W SILU (p1) (SM. 191.1) Xk Yk 2 Sk (k =
1; 2), TO ESTX (p1) WYPOLNENO DLQ S. pUSTX W OBOZNA^ENIQH (1) X Y . |TO
OZNA^AET, W ^ASTNOSTI, ^TO X1 Y1; X2 Y2 I TAK KAK Sk | POLUKOLXCA,
IMEEM
X
s X
t
Y1 = X1 + X1j ; Y2 = X2 + X2j ; Xkm 2 Sk (k = 1; 2):
j =1 i=1
pO\TOMU, Y = (X1 + P X1j ) (X2 + P X2i) = X + P Zj + P Zj0 + P Zji, GDE
j i j i i;j
Zj = X1j X2 (j = 1; : : :; s); Zj = X1 X2i (i = 1; : : : ; t); Zji = X1j X2i,
0
^TO OZNA^AET SPRAWEDLIWOSTX (p2) DLQ S: >
3. z A M E ^ A N I E. eSLI S1 I S2 | KOLXCA MNOVESTW, TO S1 S2 NE
QWLQETSQ, WOOB]E GOWORQ, KOLXCOM (SM. NIVE UPR. 6).
4. pUSTX mk | MERY (KONE^NO-ADDITIWNYE MERY) NA POLUKOLXCAH
Sk (k = 1; : : : ; n). tOGDA RAWENSTWO
(2) m(X1 : : : Xn ) m1X1 m2X2 : : : mnXn (Xk 2 Sk )
OPREDELQET MERU (SOOTWETSTWENNO KONE^NO-ADDITIWNU@ MERU) m NA Q S .
n
k
k=1
pRIWEDEM DOKAZATELXSTWO DLQ SLU^AQ n = 2. pUSTX
(3) X = X1 X2 = P X (i); X (i) = X1(i) X2(i) (i = 1; : : : ; N );
i
Xk(i) 2 Sk (k = 1; 2).
w SILU 191.8 SU]ESTWU@T KONE^NYE RAZBIENIQ fY1(j)g; fY2(k)g SOOTWET-
STWENNO MNOVESTW X1 I X2 TAKIE, ^TO X1(i) QWLQ@TSQ OB_EDINENIEM NE-
KOTORYH Y1(j), A X2(i) | OB_EDINENIEM NEKOTORYH Y2(k). aDDITIWNOSTX m
SLEDUET IZ RAWENSTW
X X X
mX = m1X1 mX2 = m1Y1(j)m2Y2(k) = m1X1(i)m2X2(i) = mX (i):
j;k i i
359
Страницы
- « первая
- ‹ предыдущая
- …
- 357
- 358
- 359
- 360
- 361
- …
- следующая ›
- последняя »
